[1] Adams R A. Sobolev Spaces. New York:Academic Press, 1975 [2] Alvino A, Volpicelli R, Volzone B. On Hardy inequalities with a remainder term. Ric Mat, 2010, 59: 265-280 [3] Balinsky A, Evans W D, Lewis R T. The Analysis and Geometry of Hardy's Inequality. New York:Springer, 2015 [4] Barbatis G, Filippas S, Tertikas A. A unified approach to improved Lp Hardy inequalities with best constants. Trans Amer Math Soc, 2004, 356(6):2169-2196 [5] Brezis H, Vázquez J L. Blowup solutions of some nonlinear elliptic problems. Revista Mat Univ Complutense Madrid, 1997, 10:443-469 [6] Brezis H, Marcus M. Hardy's inequality revisited. Ann Scuola Norm Sup Pisa, 1997, 25:217-237 [7] Brezis H, Marcus M, Shafrir I. Extremal functions for Hardy's inequality with weight. J Funct Anal, 2000, 171:177-191 [8] Cowan C. Optimal Hardy inequalities for general elliptic operators with improvements. Commun Pure Appl Anal, 2010, 9(1):109-140 [9] Cuomo S, Perrotta A. On best constants in Hardy inequalities with a remainder term. Nonlinear Analysis, 2011, 74:5784-5792 [10] Devyvera B, Fraasb M, Pinchovera Y. Optimal hardy weight for second-order elliptic operator:An answer to a problem of Agmon. J Funct Anal, 2014, 266(7):4422-4489 [11] Evans L C, Gariepy R F. Measure Theory and Fine Properties of Functions. New York:CRC Press, 1992 [12] Filippas S, Tertikas A. Optimizing improved Hardy inequalities. J Funct Anal, 2002, 192:186-233 [13] Gazzola F, Grunau H-C, Mitidieri E. Hardy inequalities with optimal constants and remainder terms. Trans Amer Math Soc, 2004, 356:2149-2168 [14] Ghoussoub N, Moradifam A. On the best possible remaining term in the Hardy inequality. Proc Natl Acad Sci USA, 2008, 105(37):13746-13751 [15] Ghoussoub N, Moradifam A. Functional Inequalities:New Perspectives and New Applications. Math Surveys Monogr, Vol 187. Providence, RI:Amer Math Soc, 2013 [16] Ioku N, Ishiwata M, Ozawa T. Sharp remainder of a critical Hardy inequality. Archiv der Mathematik, 2016, 106:65-71 [17] Ioku N, Ishiwata M, Ozawa T. Hardy type inequalities in Lp with sharp remainders. J Inequal Appl, 2017, 2017:5 [18] Ioku N, Ishiwata M. A scale invariant form of a critical Hardy inequality. Int Math Research Notices, 2015, 2015(18):8830-8846 [19] Lieb E H, Loss M. Analysis, Graduate Studies in Mathematics, Vol 14. 2nd ed. Providence, RI:American Mathematical Society, 2001 [20] Machihara S, Ozawa T, Wadade H. Hardy type inequalities on balls. Tohoku Math J, 2013, 65(3):321-330 [21] Machihara S, Ozawa T, Wadade H. Remarks on the Rellich inequality. Mathematische Zeitschrift, 2017, 286(3/4):1367-1373 [22] Machihara S, Ozawa T, Wadade H. Remarks on the Hardy type inequalities with remainder terms in the framework of equalities. arXiv:1611.03580 [23] Machihara S, Ozawa T, Wadade H. Scaling invariant Hardy inequalities of multiple logarithmic type on the whole space. Journal of Inequalities and Applications, 2015, 2015:281 [24] Ruzhansky M, Suragan D. Critical Hardy inequalities. arXiv:1602.04809 [25] Vazquez J L, Zuazua E. The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse square potential. J Funct Anal, 2000, 173:103-153 |