[1] Almahalebi M. Generalized hyperstability of the Jensen functional equation in ultrametric spaces. J Anal, 2017. Doi:10.1007/s41478-017-0060-7 [2] Almahalebi M. Non-Archimedean hyperstability of a Cauchy-Jensen type functional equation. J Class Anal, 2017, 11(2):159-170 [3] Almahalebi M. On the stability of a generalization of Jensen functional equation. Acta Math Hungar, 2018, 154(1):187-198 [4] Almahalebi M. Stability of a generalization of Cauchys and the quadratic functional equations. J Fixed Point Theory Appl, 2018, 20(12). Doi.org/10.1007/s11784-018-0503-z [5] Almahalbi M, Chahbi A. Hyperstability of the Jensen functional equation in ultrametric spaces. Aequat Math, 2017, 91:647-661 [6] Almahalebi M, Charifi A, Kabbaj S. Hyperstability of a Cauchy functional equation. J Nonlinear Anal Optim, 2015, 6(2):127-137 [7] Aribou Y, Almahalebi M, Kabbaj S. Hyperstability of cubic functional equation in ultrametric spaces. Proyecciones J of Math, 2017, 36(3):461-484 [8] Bahyrycz A, Brzdęk J, Piszczek M. On Approximately p-Wright Affine Functions in Ultrametric Spaces. J Funct Spaces, 2013. Art ID 723545 [9] Bahyrycz A, Piszczek M. Hyperstability of the Jensen functional equation. Acta Math Hungar, 2014, 142(2):353-365 [10] Bourgin D G. Approximately isometric and multiplicative transformations on continuous function rings. Duke Math J, 1949, 16:385-397 [11] Brzdęk J, Chudziak J, Páles Z. A fixed point approach to stability of functional equations. Nonlinear Anal, 2011, 74:6728-6732 [12] Brzdęk J, Ciepliñski K. A fixed point approach to the stability of functional equations in non-Archimedean metric spaces. Nonlinear Anal, 2011, 74:6861-6867 [13] Brzdęk J, Ciepliñski K. Hyperstability and superstability. Abstr Appl Anal, 2013. Article ID 401756 [14] Brzdęk J. A hyperstability result for the Cauchy equation. Bull Aust Math Soc, 2014, 89:33-40 [15] Brzdęk J. Hyperstability of the Cauchy equation on restricted domains. Acta Math Hungar, 2013, 141:58-67 [16] Brzdęk J. Remarks on hyperstability of the Cauchy functional equation. Aequat Math, 2013, 86:255-267 [17] Brzdęk J. Stability of additivity and fixed point methods. Fixed Point Theory Appl, 2013:285 [18] Diagana T, Ramarosan F. Non-Archimedean Operator Theory. SpringerBrieft in Mathematics. DOI 10.1007/978-3-319-27323-522, 2016 [19] EL-Fassi I, Brzdęk J, Chahbi A, Kabbaj S. On the Hyperstability of the biadditive functional equation. Acta Mathematica Scientia, 2017, 37B(6):1727-1739 [20] EL-Fassi I, Kabbaj S, Charifi A. Hyperstability of Cauchy-Jensen functional equations. Indag Math, 2016, 27:855-867 [21] EL-Fassi I. On a New Type of Hyperstability for Radical Cubic Functional Equation in Non-Archimedean Metric Spaces. Results Math, 2017, 72:991-1005 [22] Gao Z X, Cao H X, Zheng W T, Xu L. Generalized Hyers-Ulam-Rassias stability of functional inequalities and functional equations. J Math Inequal, 2009, 3(1):63-77 [23] Gselmann E. Hyperstability of a functional equation. Acta Math Hungar, 2009, 124:179-188 [24] Găvrutą P. A generalization of the Hyers-Ulam-Rassias stability od approximately additive mapping. J Math Anal Appl, 1994, 184:431-436 [25] Hensel K. Uber eine neue begründung der theorie der algebraischen zahlen. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1899, 6:83-88 [26] Hyers D H. On the stability of the linear functional equation. Proc Natl Acad Sci USA, 1941, 27(4):222-224 [27] Khrennikov A. Non-Archimedean Analysis, Quantum Paradoxes, Dynamical Systems and Biological Models. Dordrecht:Kluwer Academic Publishers, 1997 [28] Maksa G, Páles Z. Hyperstability of a class of linear functional equations. Acta Math, 2001, 17(2):107-112 [29] Moszner Z. Stability has many names. Aequat Math, 2016, 90:983-999 [30] Piszczek M. Remark on hyperstability of the general linear equation. Aequat Math, 2014, 88(1):163-168 [31] Rassias Th M. On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc, 1978, 72(2):297-300 [32] Sirouni M, Kabbaj S. A fixed point approach to the hyperstability of Drygas functional equation in metric spaces. J Math Comput Sci, 2014, 4(4):705-715 [33] Ulam SM. A Collection of Mathematical Problems//Interscience Tracts in Pure and Applied Mathematics. No 8. New York, NY, USA:Interscience Publishers, 1960 [34] Zhang D. On Hyperstability of generalized linear functional equations in several variables. Bull Aust Math Soc, 2015, 92(2):259-267 |