[1] Bourgain J. Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. International Mathematics Research Notices, 1994, 1994(11):475-497 [2] Bourgain J. Recent progress on quasi-periodic lattice Schrödinger operators and Hamiltonian PDEs. Russian Math Surveys Russian Mathematical Surveys, 2004, 59(2):37-52 [3] Baldi P, Berti M, Montalto R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen, 2014, 359(1/2):471-536 [4] Baldi P, Berti M, Montalto R. KAM for quasi-linear KdV. Comptes Rendus Mathematique, 2014, 352(7/8):603-607 [5] Berti M, Biasco L, Procesi M. KAM theory for the Hamiltonian derivative wave equations. Annales Scientifiques De Lécole Normale Supérieure, 2013, 46(2):301-373 [6] Craig W, Wayne C E. Newton's method and periodic solutions of nonlinear wave equations. Communications on Pure & Applied Mathematics, 1993, 46(11):1409-1498 [7] Fan E. Uniformly constructing a series of exact solutions to nonlinear equations in mathematical physics. Chaos Solitons & Fractals, 2003, 16(5):819-839 [8] Huang Y, Wu Y, Meng F, Yuan W. All exact traveling wave solutions of the combined KdV-mKdV equation. Advances in Difference Equations, 2014, 2014(1):261 [9] Kuksin S B. Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Functional Analysis & Its Applications, 1987, 21(3):192-205 [10] Kuksin S B. On small-denominators equations with large variable coefficients. Zeitschrift Für Angewandte Mathematik Und Physik Zamp, 1997, 48(2):262-271 [11] Kuksin S B. Analysis of Hamiltonian PDEs. Oxford:Oxford Univ Press, 2000 [12] Kuksin S B. Fifteen years of KAM for PDE. Geometry Topology & Mathematical Physics, 2002:237-258 [13] Kappeler T, Pöschel J. KdV & KAM. Berlin, Heidelberg:Springer-Verlag, 2003 [14] Lu D, Shi Q. New solitary wave solutions for the combined KdV-MKdv equation. Journal of Information & Computational Science, 2010, 8(8):1733-1737 [15] Liu J, Yuan X. A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Communications in Mathematical Physics, 2011, 307(3):629-673 [16] Liu J, Yuan X. Spectrum for quantum duffing oscillator and small-divisor equation with large-variable coefficient. Communications on Pure & Applied Mathematics, 2010, 63(9):1145-1172 [17] Liu J, Yuan X. KAM for the derivative nonlinear Schrödinger equation with periodic boundary conditions. Journal of Differential Equations, 2014, 256:1627-1652 [18] Mohamad MNB. Exact Solutions to the combined KdV and MKdV equation. Mathematical Methods in the Applied Sciences, 1992, 15(2):73-78 [19] Yan K K, Axelsen J, Maslov S. Wave propatation in nonlinear lattice. Wave Propagation in nonlinear lattice Ⅱ. Journal of the Physical Society of Japan, 1975, 38(3):673 [20] Lax P D. Development of singularities of solutions of nonlinear hyperbolic partial differential equations. Journal of Mathematical Physics, 2004, 5(5):611-613 [21] Yang X, Tang J. New travelling wave solutions for combined KdV-mKdV equation and (2+1)-dimensional Broer-Kaup-Kupershmidt systemNew travelling wave solutions for combined KdV-mKdV equation and (2+1)-dimensional Broer-Kaup-Kupershmidt system. Chinese Phy, Series B, 2007, 16(2):310-317 [22] Shi Y, Xu J. KAM tori for defocusing modified KdV equation. Journal of Geometry & Physics, 2015, 90:1-10 [23] Wayne C E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Communications in Mathematical Physics, 1990, 127(3):479-528 [24] Xu S, Yan D. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15(5):1857-1869 [25] Zhang J, Gao M, Yuan X. KAM tori of reversible partial differential equation. Nonlinearity, 2011, 24:1189-1228 [26] Zhang J. New solitary wave solution of the combined KdV and mKdV equation. Int J Theor Phys, 1998, 37:1541-1546 |