[1] Burns D, Epstein C. Embeddability for three-dimensional CR manifolds. Amer Math Soc, 1990, 4:809-840 [2] Beals R, Greiner P C. Calculus on Heisenberg Manifolds (AM-119). Princeton University Press, 2016 [3] Case J S, Chanillo S, Yang P. The CR Paneitz operator and the stability of CR pluriharmonic functions. Adv Math, 2016, 287:109-122 [4] Chanillo S, Chiu H L, Yang P. Embeddability for 3-dimensional Cauchy-Riemann manifolds and CR Yamabe invariants. Duke Math J, 2012, 161(15):2909-2921 [5] Chen S C, Shaw M C. Partial Differential Equations in Several Complex Variables. American Mathematical Soc, 2001 [6] Chang S C, Wu C T. On the CR Obata theorem for Kohn Laplacian in a closed pseudohermitian hypersurface in Cn+1. Preprint, 2012 [7] Graham C R, Lee J M. Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains. Duke Math J, 1988, 57(3):697-720 [8] Kohn J J. Boundaries of Complex Manifolds//Proceedings of the Conference on Complex Analysis. Berlin, Heidelberg:Springer, 1965:81-94 [9] Li S Y, Luk H S. The sharp lower bound for the first positive eigenvalues of sub-Laplacian on the PseudoHermitian manifold. Proc Amer Math Soc, 2004, 132:789-798 [10] Li S Y, Son D N, Wang X D. A new characterization of the CR sphere and the sharp eigenvalue estimate for the Kohn Laplacian. Adv Math, 2015, 281:1285-1305 [11] Li S Y, Tran M. On the CR-Obata theorem and some extremal problem associated to pseudoscalar curvature on the real Ellipsoids in Cn+1. Trans Amer Math Soc, 2011, 363(8):4027-4042 [12] Li S Y, Wang X D. An Obata-type theorem in CR geometry. J Differential Geometry, 2013, 95(3):483-502 [13] Obata M. Certain Conditions for a Riemannian manifold to Be Isometric with a sphere. Math Soc Japan, 1962, 14:333-340 [14] Shao Z Q, Hong J X. The eigenvalue problem for the Laplacian equations. Acta Mathematica Scientia, 2007, 27B(2):329-337 [15] Xie C D, Shen Y T, Yao Y X. Eigenvalue problem of elliptic equations with Hardy potential. Acta Mathematica Scientia, 2009, 29B(5):1489-1496 |