[1] Elliott G A. On the classification of the inductive limts of sequences of semisimple finite dimensional algebras. J Algeb, 1976, 38:29-44 [2] Elliott G A, Gong G H. On the classification of C*-algebras of real rank zero. Ⅱ. Ann of Math, 1996, 144:497-610 [3] Elliott G A, Gong G H, Li L Q. On the classification of simple inductive limit C*-algebras. Ⅱ. The isomorphism theorem. Invent Math, 2007,168:249-320 [4] Gong G H. On the classification of simple inductive limit C*-algebras. I. The reduction theorem. Doc Math, 2002, 7:255-461 [5] Lin H X. Tracially AF C*-algelbras. Trans Amer Math Soc, 2001, 353:683-722 [6] Lin H X. The tracial topological rank of C*-algebras. Proc London Math Soc, 2001, 83:199-234 [7] Elliott G A, Niu Z. On tracial approximation. J Funct Anal, 2008, 254:396-440 [8] Fan Q Z, Fang X C. Non-simple tracial approximation. Houston J of Math, 2011, 37:1249-1263 [9] Connes A. Out conjugacy class of automorphisms of factors. Ann Sci Ecole Norm Sup, 1975, 8:383-420 [10] Herman R, Ocneanu A. Stability for integer actions on UHF C*-algebras. J Funct Anal, 1984, 59:132-144 [11] Rordam M. Classification of certain infinite simple C*-algebras. J Funct Anal, 1995, 131:415-458 [12] Kishimoto A. The Rohlin property for shifts on UHF algebras. J Reine Angew Math, 1995, 465:183-196 [13] Osaka H, Phillips N C. Stable and real rank for crossed products by automorphisms with the tracial Rokhlin property. Ergodic Theory Dynam Systems, 2006, 26:1579-1621 [14] Osaka H, Phillips N C. Crossed products by finite group actions with the Rokhlin property. Mathematische Zeitschrift, 2012, 270:19-42 [15] Phillips N C. Crossed products by finite cyclic group actions with the tracial Rokhlin property. arXiv preprint math. OA/0306410 [16] Phillips N C. The tracial Rokhlin property for actions of finite groups on C*-algebras. American Journal of Mathematics, 2011, 133:581-636 [17] Wang Q Y. Tracial Rokhlin property and non-commutative dimension. arXiv preprint math. OA/1211.5450v1 [18] Brown L G, Pedersen G K. Non-stable K-theory and extremally rich C*-algebras. arXiv preprint math. OA/0708. 3078 [19] Brown L G, Pedersen G K. Ideal structure and C*-algebras of low rank. Math Scand, 2007, 100:5-33 [20] Lin H X. An introduction to the classification of amenable C*-algebras. New Jersey, London, Singapore, Hong Kong:World Scientific, 2001 [21] Fan Q Z. Some C*-algebras properties preserved by tracial approximation. Israel J of Math, 2013, 195:543-563 [22] Fang X C, Fan Q Z. Certain properties for crossed product by automorphisms with certain non-simple tracial Rokhlin property. Ergodic Theory Dynam Systems, 2013, 33:1391-1400 [23] Fan Q Z, Fang X C. Stable rank one and real rank zero for crossed products by automorphisms with the tracial Rokhlin property. Chinese Ann Math Series, 2009, 30B:179-186 [24] Fan Q Z, Fang X C. Certain class of C*-algebras preserved by tracial approximation. Frontiers of Mathematics in China, 2012, 7:449-458 [25] Kishimoto A, Kumijian A. Crossed products of Cuntz algebras by quasi-free automorphisms. Operator algebras and their application (Waterloo, ON,1994/1995), Fields Inst Commun, 1997, 13:173-192 [26] Jeong J A, Osaka H. Extremally rich C*-crossed products and cancellation property. Australlian Mathematical Society A, 1988, 64:285-301 [27] Xue T J, An Y L, Hon J C. Characterization of derivations on B(X) by local actions. Acta Mathemtica Scientia, 2017, 37B(3):668-678 |