[1] Bácsó S, Matsumoto M. On Finsler spaces of Douglas type. A generalization of the notion of Berwald space. Publ Math Debrecen, 1997, 51:385-406. MR 98j:53024 [2] Bryant R. Some remarks on Finsler manifolds with constant flag curvature. Houston J Math, 2002, 28:221-262 [3] Bácsó S, Matsumoto M. On Finsler spaces of Douglas type-a generalization of the notion of Berwald space. Publ Math Debrecen, 1997, 51:385-406 [4] Cheng X Y, Shen Z M. Projectively flat Finsler metrics with almost isotruplc-S-curvature. Acta Mathematica Scientia, 2006, 26B(2):307-313 [5] Li B L, Shen Y B, Shen Z M. On a class of Douglas metrics. Studia Sci Math Hung, 2009, 46:355-365 [7] Li B L, Shen Z M. On a class of projectively flat Finsler metrics with constant flag curvature. Int J Math, 2007, 18:749-760 [7] Li B L, Shen Z M. Projectively flat fourth root Finsler metrics. Can Math Bull, 2012, 55:138-145 [8] Matsumoto M. Finsler spaces with (α, β)-metric of Douglas type. Tensor (N S), 1998, 60:123-134 [9] Mo X H, Solórzano N M, Tenenblat K. On spherically symmetric Finsler metrics with vanishing Douglas curvature. Diff Geom Appl, 2013, 31:746-758 [10] Wang X M, Li B L. On Douglas general (α, β)-metrics, arXiv:1606.08043v1. [11] Yu C T, Zhu H M. On a new class of Finsler metrics. Diff Geom Appl, 2011, 29:244-254 [12] Yu C T, Zhu H M. Projectively flat general (α, β)-metrics with constant flag curvature. J Math Anal Appl, 2015, 429:1222-239 [13] Zhou L F. Spherically symmetric Finsler metrics in Rn. Publ Math Debrecen, 2012, 80:67-77 [14] Zhu H M. On general (α, β)-metrics with vanishing Douglas curvature. Int J Math, 2015, 26(9):Article ID:1550076, 16pp [15] Zhu H M. A class of Finsler metrics of scalar flag curvature. Diff Geom Appl, 2015, 40:321-331 |