[1] Acciaio B, Follmer H, Penner I. Risk assessment for uncertain cash flows:model ambiguity, discounting ambiguity, and the role of bubbles. Financ Stoch, 2012, 16(4):669-709 [2] Artzner P, Delbaen F, Eber J M, et al. Thinking coherently. Risk, 1997, 10:68-71 [3] Artzner P, Delbaen F, Eber J M, et al. Coherent measures of risk. Math Financ, 1999, 9(3):203-228 [4] Artzner P, Delbaen F, Eber J M, et al. Coherent multiperiod risk adjusted values and Bellman's principle. Ann Oper Res, 2007, 152(1):5-22 [5] Balbás A, Balbás R, Jiménez-Guetta P.Vector risk functions. Mediterr J Math, 2012, 9:563-574 [6] Burgert C, Rüschendorf L. Consistent risk measures for portfolio vectors. Insur Math Econ, 2006, 38:289-297 [7] Cascos I, Molchanov I. Multivariate risks and depth-trimmed regions. Financ Stoch, 2007, 11:373-397 [8] Cerreia-Vioglio S, Maccheroni F, Marinacci M, et al. Risk measures rationality and diversification. Math Financ, 2011, 21(4):743-774 [9] Chen W C, Ye Z X. Fτ-coherent risk measures. Acta Math Sci, 2007, 27A(5):830-838 [10] Cheridito P, Li T. Risk measures on Orlicz heart. Math Financ, 2009, 19:189-214 [11] Delbaen F. Coherent Risk Measures on General Probability Spaces//Advances in Finance and Stoshatics. Berlin:Springer, 2002:1-38 [12] Delbaen F. Risk measures for non-integrable random variables. Math Financ, 2009, 19:329-333 [13] Denneberg D. Non-Additive Measure and Integral. Theory and Decision Library, 1994, 27(2):872-879 [14] Deprez O, Gerber, Hans U. On convex principles of premium calculation. Insur Math Econ, 1985, 4(3):179-189 [15] El Karoui N, Ravanelli C. Cash subadditive risk measures and interest rate ambiguity. Math Financ, 2009, 19(4):561-90 [16] Embrechts P, Puccetti G. Bounds for functions of multivariate risks. J Multivar Anal, 2006, 97:526-547 [17] Föllmer H, Schied A. Robust Preferences and Convex Measures of Risk//Advances in Finance and Stochastic. Berlin:Springer, 2002:39-56 [18] Föllmer H, Schied A. Convex measures of risk and trading constraints. Financ Stoch, 2002b, 6:429-447 [19] Föllmer H, Schied A. Stochastic Finance:An Introduction in Discrete Time, 3nd ed. De Gruyter Studies in Mathematics, 2011:175-246 [20] Frittelli M, Gianin E R. Putting order in risk measures. J Bank Financ, 2002, 26:1473-1486 [21] Frittelli M, Scandolo G. Risk measures and capital requirements for processes. Math Financ, 2006, 16(4):589-612 [22] Hamel A H, Heyde F. Duality for set-valued measures of risk. SIAM J Financ Math, 2010, 1:66-95 [23] Jouini W, Meddeb M, Touzi N. Vector-valued coheret risk measures. Financ Stoch, 2004, 8:531-552 [24] Kulikov A V. Multidimensional coherent and convex risk measures. Theory Probabilty Appl, 2008, 52(4):614-635 [25] Krätschmer V. Robust representation of convex risk measures by probability measures. Financ Stoch, 2005, 9(4):597-608 [26] Krätschmer V. On σ-additive robust representation of convex risk measures for unbounded financial positions in the presence of uncertainty about the market model. SFB 649 Discussion Paper, 2007 [27] Ma X M, Yuan H L, Hu Y J. Duration of negative surplus for a two state Markov-Modulated risk model. Acta Math Sci, 2010, 30B(4):1167-1174 [28] Mo X Y, Zhou J M. Double-Markov risk measures. Acta Math Sci, 2013, 33B(2):333-340 [29] Rüschendorf L. Mathematical Risk Analysis. Berlin:Springer, 2013 [30] Tahar I B, Lépinette E. Vector-valued coherent risk measures processes. International Journal of Theoretical and Applied Finance, 2014, 2(17):48-75 [31] Wei L, Hu Y J. Coherent and convex risk mesaures for portfolios with applications. Stat Probab Lett, 2014, 9:114-120 [32] Yan J A. An Introduction to the Financial Mathematics (in Chinese). Beijing:Chinese Academic Press, 2012:228-240 |