[1] Alberti G, Ambrosio L. A geometrical approach to monotone functions in Rn. Math Z, 1999, 230:259-316 [2] Alberti G, Ambrosio L, Cannarsa P. On the singularities of convex functions. Manuscripta Math, 1992, 76:421-435 [3] Aubin J, Frankowska H. Set-valued analysis//Tamer B. Systems and Control:Foundations and Applications. Boston:Basel, 1990:205-264 [4] Clarke F, Ledyaev Y, Stern R, et al. Nonsmooth Analysis and Control Theory. New York:Springer-Verlag, 1998 [5] Colesanti A. A Steiner type formula for convex functions. Mathematika, 1997, 44:195-214 [6] Colesanti A, Hug D. Hessian measures of semi-convex functions and applications to support measures of convex bodies. Manuscripta Math, 2000, 101:209-238 [7] Colesanti A, Hug D. Steiner type formulae and weighted measures of singularities for semi-convex functions. Trans Amer Math Soc, 2000, 352:3239-3263 [8] Colesanti A, Salani P. Generalized solutions of Hessian equations. Bull Austral Math Soc, 1997, 56:459-466 [9] Federer H. Geometric Measure Theory. New York:Springer-Verlag, 1969 [10] Fu J. Monge-Ampère functions I. Indiana Univ Math J, 1989, 38:745-771 [11] Fu J. Monge-Ampère functions Ⅱ. Indiana Univ Math J, 1989, 38:773-789 [12] Fu J. An extension of Alexandrov's theorem on second derivatives of convex functions. Adv Math, 2011, 228:2258-2267 [13] Giaquinta M, Modica G, Souček J. Graphs of finite mass which cannot be approximated in area by smooth graphs. Manuscripta Math, 1993, 78:259-271 [14] Giaquinta M, Modica G, Souček J. Cartesian Currents in the Calculus of Variations, I, Ⅱ. Berlin:SpringerVerlag, 1998 [15] Jean-Baptiste H, Claude L. Fundamentals of Convex Analysis. Berlin:Springer-Verlag, 2001 [16] Jerrard R. Some remarks on Monge-Ampère functions. Singularities in PDE and the calculus of variations, CRM Proc Lecture Notes, 44. Amer Math Soc, Providence, 2008:89-112 [17] Lions P. Generalized Solutions of Hamilton-Jacobi Equations. Boston:Pitman Publishing, 1982 [18] Mantegazza C, Mennucci A. Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl Math Optim, 2003, 47:1-25 [19] Mucci D. Approximation in area of graphs with isolated singularities. Manuscripta Math, 1995, 88:135-146 [20] Mucci D. Approximation in area of continuous graphs. Calc Var, 1996, 4:525-557 [21] Mucci D. Graphs of finite mass which cannot be approximated by smooth graphs with equibounded area. J Funct Anal, 1998, 152:467-480 [22] Mucci D. A characterization of graphs which can be approximated in area by smooth graphs. J Eur Math Soc, 2001, 3:1-38 [23] Rockafellar R. Convex Analysis. Princeton:Princeton University Press, 1997 [24] Trudinger N, Wang X. Hessian measures I. Topol Method Nonl An, 1997, 10:225-239 [25] Trudinger N, Wang X. Hessian measures Ⅱ. Ann Math, 1999, 150:579-604 |