[1] Acosta M D, Aron R M, García D, Maestre M. The Bishop-Phelps-Bollobás theorem for operators. J Funct Anal, 2008, 254(11):2780-2799 [2] Bandyopadhyay P, Godefroy G. Linear structures in the set of norm-attaining functionals on a Banach space. J Convex Anal, 2006, 13(3/4):489-497 [3] Bessaga C, Pe lczyński A. On bases and unconditional convergence of series in Banach spaces. Studia Math, 1958, 17(2):151-164 [4] Bishop E, Phelps R R. A proof that every Banach space is subreflexive. Bull Amer Math Soc, 1961, 67:97-98 [5] Bishop E, Phelps R R. The support functionals of a convex set//Proc Sympos Pure Math, Vol VⅡ. Providence, RI:Amer Math Soc, 1963:27-35 [6] Bollobás B. An extension to the theorem of Bishop and Phelps. Bull London Math Soc, 1970, 2:181-182 [7] Borwein J M. A note on ε subgradients and maximal monotonicity. Pacific J Math, 1982, 103(2):307-314 [8] Bourgain J. On dentability and the Bishop-Phelps property. Israel J Math, 1977, 28(4):265-271 [9] Brøndsted A, Rockafellar R T. On the subdifferentiability of convex functions. Proc Amer Math Soc, 1965, 16:605-611 [10] Cheng L, Dai D, Dong Y. A sharp operator version of the Bishop-Phelps theorem for operators from ℓ1 to CL-spaces. Proc Amer Math Soc, 2013, 141(3):867-872 [11] Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47:324-353 [12] Ekeland I. Nonconvex minimization problems. Bull Amer Math Soc (NS), 1979, 1(3):443-474 [13] Fabian M. Each weakly countably determined Asplund space admits a Fréchet differentiable norm. Bull Aust Math Soc, 1987, 36(3):367-374 [14] Fabian M, Habala P, Hájek P, et al. Functional Analysis and Infinite-Dimensional Geometry. Springer Science & Business Media, 2013 [15] García-Pacheco F J. Three Non-Linear Problems on Normed Spaces. Kent State University, 2007 [16] García-Pacheco F J, Puglisi D. Lineability of functionals and operators. Studia Math, 2010, 201(1):37-47 [17] García-Pacheco F J, Puglisi D. Renormings concerning the lineability of the norm-attaining functionals. J Math Anal Appl, 2017, 445(2):1321-1327 [18] James R. Characterizations of reflexivity. Studia Math, 1964, 23(3):205-216 [19] Johnson W, Rosenthal H. On w*-basic sequences and their applications to the study of Banach spaces. Studia Math, 1972, 43(1):77-92 [20] Lin P K. Köthe-Bochner Function Spaces. Boston:Birkhäuser, 2004 [21] Lindenstrauss J. On operators which attain their norm. Israel J Math, 1963, 1:139-148 [22] Lindenstrauss J, Tzafriri L. Classical Banach Spaces Ⅱ:Function Spaces. Springer Science & Business Media, 2013 [23] Meyer-Nieberg P. Banach Lattices. Springer Science & Business Media, 2012 [24] Pe lczyński A. Projections in certain Banach spaces. Studia Math, 1960, 19(2):209-228 [25] Phelps R R. Convex Functions, Monotone Operators and Differentiability. Springer, 2009 [26] Phelps R R. The Bishop-Phelps Theorem, Ten Mathematical Essays on Approximation in Analysis and Topology. Amsterdam:Elsevier BV, 2005:235-244 [27] Qiu J H, Li B, He F. Vectorial Ekelaud's variational principle with a w-distance and its equivalent theorems. Acta Math Sci, 2012, 32(6):2221-2236 [28] Rosenthal H P. On subspaces of Lp. Ann Math, 1973, 97(2):344-373 |