[1] Bereanu C, Jebelean P, Mawhin J. Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowsi spaces. Math Nachr, 2010, 283(3):379-391 [2] Bereanu C, Jebelean P, Mawhin J. Radial solutions for Neumann problems with φ-Laplacians and pendulum-like nonlinearities. Discret Cont Dynam Syst A, 2010, 28(2):637-648 [3] Bereanu C, Jebelean P, Torres P J. Multiple solutions for Neumann and periodic problems with singular φ-Laplacian. J Funct Anal, 2011, 261(11):3226-3246 [4] Bereanu C, Jebelean P, Torres P J. Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. J Funct Anal, 2013, 265(4):644-659 [5] Bereanu C, Jebelean P, Torres P J. Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space. J Funct Anal, 2013, 264(1):270-287 [6] Bereanu C, Mawhin J. Nonlinear Neumann boundary value problems with φ-Laplacian operators. An Stiint Univ Ovidius Constanta, 2004, 12(2):73-92 [7] Bereanu C, Mawhin J. Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian. J Differ Equ, 2007, 243(2):536-557 [8] Bonheure D, Noris B, Weth T. Increasing radial solutions for Neumann problems without growth restrictions. Ann Inst H Poincaré Anal Non Linéaire, 2012, 29(4):573-588 [9] Chu J F, Sun Y G, Chen H. Positive solutions of Neumann problems with singularities. J Math Anal Appl, 2008, 337(2):1267-1272 [10] Coelho I, Corsato C, Obersnel F, et al. Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation. Adv Nonlinear stud, 2012, 12(3):621-638 [11] Miciano A R, Shivaji R. Multiple positive solutions for a class of semipositone Neumann two point boundary value problems. J Math Anal Appl, 1993, 178(1):102-115 [12] Serra E, Tilli P. Monotonicity constraints and supercritical Neumann problems. Ann Inst H Poincaré Anal. Non Linéaire, 2011, 28(1):63-74 [13] Sun J P, Li W T. Multiple positive solutions to second-order Neumann boundary value problems. Appl Math Comput, 2003, 146(1):187-194 [14] Wei D Y. Exact number of solutions of a one-dimensional prescribed mean curvature equation with general nonlinearities. Acta Math Sci, 2016, 36A(1):1-13 |