[1] Sulem C, Sulem P L. The Nonlinear Schrödinger Equation Self-focusing and Wave Collapse. New York:Springer, 1999 [2] Akrivis G D. Finite difference discretization of the cubic Schrödinger equation. IMA J Numer Anal, 1993, 13(1):115-124 [3] Chang Q S, Jia E, Sun W. Difference schemes for solving the generalized nonlinear Schrödinger equation. J Comput Phys, 1999, 148(2):397-415 [4] Dehghan M, Taleei A. A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients. Comput Phys Commun, 2010, 181(1):43-51 [5] Wang Y C. A linearized compact difference scheme for solving the nonlinear Schrödinger equation (in Chinese). J Numer Met Comput Appl, 2012, 4:312-320 [6] Tourigny Y. Optimal H1 estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J Numer Anal, 1991, 11(4):509-523 [7] Karakashian O, Makridakis C. A space-time finite element method for the nonlinear Schrödinger equation:the continuous Galerkin method. SIAM J Numer Anal, 1999, 36(6):1779-1807 [8] Jin J C, Wu X N. Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain. J Comput Appl Math, 2008, 220(1/2):240-256 [9] Li W. Two-grid mixed finite-element methods for nonlinear Schrödinger equations. Numer Meth Part D E, 2012, 28(1):63-73 [10] Wang J L. A new error analysis of Crank-Nicolson galerkin FEMs for a generalized nonlinear Schrödinger equation. J Sci Comput, 2014, 60(2):390-407 [11] Shi D Y, Wang P L, Zhao Y M. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Appl Math Lett, 2014, 38:129-13 [12] Karakashian O, Makridakis C. A space-time finite element method for the nonlinear Schrödinger equation:the discontinuous Galerkin method. Math Comput, 1998, 67(222):479-499 [13] Xu Y, Shu C W. Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J Comput Phys, 2005, 205:72-77 [14] Dehghan M, Mirzaei D. Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method. Int J for Numer Meth Eng, 2008, 76:501-520 [15] Lin Q, Liu X Q. Global superconvergence estimates of finite element method for Schrödinger equation. J Comput Math, 1998, 16(6):521-526 [16] Shi D Y, Pei L F. Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations. Appl Math Comput, 2013, 219:9447-9460 [17] Lin Q, Yan N N. The Construction and Analysis of High Accurate Finite Element Methods. China:Hebei University Press, 1996 [18] Shi D Y, Zhang D. Approximation of nonconforming quasi-Wilson element for sine-Gordon equations. J Comput Math, 2013, 31(3):271-282 [19] Shi Z C. A remark on the optimal order of convergence of Wilson nonconforming element. Math Numer Sinica, 1986, 8:159-163 [20] Shi D Y, Chen S C, Hagiwara I. Convergence analysis for a nonconforming membrane element on anisotropic meshes. J Comput Math, 2005, 23(4):373-382 [21] Rannacher R, Turek S. Simple nonconforming quadrilateral Stokes element. Numer Meth Part D E, 1992, 8:97-111 [22] Hu J, Man H Y, Shi Z C. Constrained nonconforming Q1rot element for Stokes flow and planar elasticity. J Comput Math, 2005, 27:311-324 [23] Park C, Sheen D. P1-nonconforming quadrilateral finite element method for second order elliptic problem. SIAM J Numer Anal, 2003, 41:624-640 [24] Shi D Y, Xu C. E1rot nonconforming finite element approximation to Signorini problem. Sci China Math, 2013, 56:1301-1311 [25] Shi D Y, Hao X B. Accuracy analysis for quasi-Carey element. J Syst Sci Complex, 2008, 21(3):456-462 [26] Knobloch P, Tobiska L. The P1mod element:a new nonconforming finite element for convection-diffusion problems. SIAM J Numer Anal, 2003, 41(2):436-456 |