[1] Duncan T E, Maslowski B, Pasik-Duncan B. Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise. Stoc Proc Appl, 2005, 115(8):1357-1383
[2] Grecksch W, Anh V V. Aparabolic stochastic differential equation with fractional Brownian motion input. Statist Proba. Lett, 1999, 41(4):337-346
[3] Ahmed H M. Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion. Adv Difference Equ, 2014, 2014(113):1-11
[4] Boufoussi B, Hajji S. Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Statist Probab Lett, 2012, 82(8):1549-1558
[5] Biagini F, Hu Y, ksendal B, et al. Stochastic Calculus for Fractional Brownian Motion and Applications. London:Springer-Verlag, 2008
[6] Chen M. Approximate controllability of stochastic equations in a Hilbert space with fractional Brownian motions. Stoch Dyn, 2015, 15(1):1550005
[7] Caraballo T, Garrido-Atienza M J, Taniguchi T. The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal, 2011, 74(11):3671-3684
[8] Carimichel N, Quinn M D. Fixed Point Methods in Nonlinear Control. Lecture Notes in Control and Information Society, Vol 75. Berlin:Springer, 1984
[9] Dauer J P, Mahmudov N I. Controllability of stochastic semilinear functional differential equations in Hilbert spaces. J Math Anal Appl, 2004, 290(2):373-394
[10] Dai W, Heyde C C. Itô's formula with respect to fractional Brownian motion and its application. J Appl Math Stochastic Anal, 1996, 9(4):439-448
[11] Hu Y. Integral transformations and anticipative calculus for fBms. Memoirs Amer Math Soc, 2005, 175:825
[12] Mishura Y S. Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer-Verlag, 2008
[13] Nourdin I. Selected Aspects of Fractional Brownian Motion. Springer-Verlag, 2012
[14] Nualart D. Malliavin Calculus and Related Topics. 2nd ed. Springer-Verlag, 2006
[15] Duncan T E, Maslowski B, Pasik-Duncan B. Fractional brownian motion and stochastic equations in Hilbert spaces. Stoch Dyn, 2002, 2(2):225-250
[16] Lakhel E H. Controllability of neutral stochastic functional integro-differential equations driven by fractional Brownian motion. Arxiv:1503.07985v1
[17] Maslowski B, Nualart D. Evolution equations driven by a fractional Brownian motion. J Funct Anal, 2003, 202(1):277-305
[18] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl Math Sci, Vol 44. New York:Springer-Verlag, 1983
[19] Ren Y, Hu L, Sakthivel R. Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay. J Comput Appl Math, 2011, 235(8):2603-2614
[20] Shen G, Yin X, Yan L. Least squares estimation for Ornstein-Uhlenbeck processes driven by the weighted fractional Brownian motion. Acta Math Sci, 2016, 36B(2):394-408 |