[1] Censor Y, Elfving T. A multiprojection algorithm using Bregman projections in a product space. Numer Algorithms, 1994, 8:221-239
[2] Byrne C. Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Problem, 2002, 18:441-453
[3] Censor Y, Bortfeld T, Martin N, Trofimov A. A unified approach for inversion problem in intensitymodulated radiation therapy. Phys Med Biol, 2006, 51:2353-2365
[4] Censor Y, Elfving T, Kopf N, Bortfeld T. The multiple-sets split feasiblility problem and its applications. Inverse Problem, 2005, 21:2071-2084
[5] Censor Y, Motova A, Segal A. Perturbed projections ans subgradient projiections for the multiple-sets split feasibility problem. J Math Anal Appl, 2007, 327:1244-1256
[6] Xu H K. A variable Krasnosel'skii-Mann algorithm and the multiple-sets split feasibility problem. Inverse Problem, 2006, 22:2021-2034
[7] Yang Q. The relaxed CQ algorithm for solving the split feasibility problem. Inverse Problem, 2004, 20:1261-1266
[8] Zhao J, Yang Q. Several solution methods for the split feasibility problem. Inverse Problem, 2005, 21:1791-1799
[9] Chang S S, Cho Y J, Kim J K, Zhang W B, Yang L. Multiple-set split feasibility problems for asymptotically strict pseudocontractions. Abst Appl Anal, 2012, 2012:Article ID 491760
[10] Chang S S, Wang L, Tang Y K, Yang L. The split common fixed point problem for total asymptotically strictly pseudocontractive mappings. J Appl Math, 2012, 2012:Article ID 385638
[11] Moudafi A. A relaxed alternating CQ algorithm for convex feasibility problems. Nonlinear Anal, 2013, 79:117-121
[12] Moudafi A, Al-Shemas Eman. Simultaneouss iterative methods forsplit equality problem. Trans Math Prog Appl, 2013, 1:1-11
[13] Moudafi A. Split monotone variational inclusions. J Optim Theory Appl, 2011, 150:275-283
[14] Takahashi W. Iterative methods for split feasibility problems and split common null point problems in Banach spaces//The 9th International Conference on Nonlinear Analysis and Convex Analysis. Thailand, Jan:Chiang Rai, 2015:21-25
[15] Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems. Math Stud, 1994, 63:123-145
[16] Censor Y, Segal A. The split common fixed point problem for directed operators. J Convex Analysis, 2009, 16:587-600
[17] Eslamian M, Latif A. General split feasibility problems in Hilbert spaces. Abst Appl Anal, 2013, 2013:Article ID 805104
[18] Chen R D, Wang J, Zhang H W. General split equality problems in Hilbert spaces. Fixed Point Theory Appl, 2014, 2014:35
[19] Chuang C S. Strong convergence theorems for the split variational inclusion problem in Hilbert spaces. Fixed Point Theory Appl, 2013, 2013:350
[20] Chang S S, Wang L. Strong convergence theorems for the general split variational inclusion problem in Hilbert spaces. Fixed Point Theory Appl, 2014, 2014:171
[21] Chang S S, Agarwal Ravi P. Strong convergence theorems of general split equality problems for quasinonexpansive mappings. J Ineq Appl, 2014, 2014:367
[22] Chang S S, Wang L, Tang Y K, Wang G. Moudafi's open question and simultaneous iterative algorithm for general split equality variational inclusion problems and general split equality optimization problems. Fixed Point Theory Appl, 2014, 2014:215
[23] Naraghirad E. On an open question of Moudafi for convex feasibility problem in Hilbert spaces. Taiwan J Math, 2014, 18(2):371-408
[24] Tang J F, Chang S S, Liu M. General split feasibility problems for two families of nonexpansive mappings in Hilbert spaces. Acta Math Sci, 2016, 36B(2):602-613 |