[1] Aziz-Alaoui M A, Okiye M D. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-Type II schemes. Appl Math Lett, 2003, 16:1069-1075
[2] Blat J, Brown K J. Global bifurcation of positive solutions in some systems of elliptic equations. SIAM J Math Anal, 1986, 17:1339-1353
[3] Chen B, Wang M X. Qualitative analysis for a diffusive predator-prey model. Computers and Mathematics with Applications, 2008, 55:339-355
[4] Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. J Funct Anal, 1971, 8:321-340
[5] Dancer E N, Du Y H. Effects of certain degeneracies in the predator-prey model. SIAM J Math Anal, 2002, 34:292-314
[6] Dockery J, Hutson V, Mischaikow K, Pernarowski M. The evolution of slow dispersal rates:a reaction-diffusion model. J Math Biol, 1998, 37:61-83
[7] Du Y H. Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Vol 1. Maximum Principles and Applications. Singapore:World Scientific, 2005
[8] Du Y H, Hsu S B. A diffusive predator-prey model in heterogeneous environment. J Differential Equ, 2004, 203:331-364
[9] Du Y H, Huang Q. Blow-up solutions for a class of semilinear elliptic and parabolic equations. SIAM J Math Anal, 1999, 31:1-18
[10] Du Y H, Peng R, Wang M X. Effect of a protection zone in the diffusive Leslie predator-prey model. J Differential Equ, 2009, 246:3932-3956
[11] Du Y H, Shi J P. A diffusive predator-prey model with a protection zone. J Differential Equ, 2006, 229:63-91
[12] Du Y H, Shi J P. Some recent results on diffusive predator-prey models in spatially heterogeneous environ-ment//Brummer H, Zhao X, Zou X. Nonlinear Dynamics and Evolution Equations. Fields Inst Commun. Vol 48. Providence, RI:Amer Math Soc, 2006:95-135
[13] Du Y H, Shi J P. Allee effect and bistability in a spatially heterogeneous predator-prey model. Trans Amer Math Soc, 2007, 359(9):4557-4593
[14] Du Y H, Wang M X. Asymptotic behaviour of positive steady-states to a predator-prey model. Proc Roy Soc Edinburgh A, 2006, 136:759-779
[15] Hutson V, Lou Y, Mischaikow K. Spatial heterogeneity of resources versus Lotka-Volterra dynamics. J Differential Equ, 2002, 185:97-136
[16] Hutson V, Lou Y, Mischaikow K. Convergence in competition models with small diffusion coefficients. J Differential Equ, 2005, 211:135-161
[17] Hutson V, Lou Y, Mischaikow K, Polá?ik P. Competing species near a degenerate limit. SIAM J Math Anal, 2003, 35:453-491
[18] Hutson V, Mischaikow K, Polá?ik P. The evolution of dispersal rates in a heterogeneous time-periodic environment. J Math Biol, 2001, 43:501-533
[19] Kadota T, Kuto K. Positive steady states for a prey-predator model with some nonlinear diffusion terms. J Math Anal Appl, 2006, 323:1387-1401
[20] Kuto K. Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment. Nonlinear Anal RWA, 2009, 10:943-965
[21] Ko W, Ryu K. Coexistence states of a nonlinear Lotka-Volterra type predator-prey model with cross-diffusion. Nonlinear Anal, 2009, 71:e1109-e1115
[22] Lou Y, Ni W M. Diffusion vs cross-diffusion. J Differential Equ, 1996, 131:79-131
[23] Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion:an elliptic approach. J Differential Equ, 1999, 154:157-190
[24] Oeda K. Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone. J Differential Equ, 2011, 250:3988-4009
[25] Peng R, Wang M X. Positive steady states of the Holling-Tanner prey-predator model with diffusion. Proc Roy Soc Edinburgh, 2005, 135A:149-164
[26] Shi J P. Persistence and bifurcation of degenerate solutions. J Funct Anal, 1999, 169(2):494-531
[27] Wang Y X, Li W T. Effects of cross-diffusion and heterogeneous environment on positive steady states of a prey-predator system. Nonlinear Anal RWA, 2013, 14:1235-1246
[28] Wang Y X, Li W T. Fish-Hook shaped global bifurcation branch of a spatially heterogeneous cooperative system with cross-diffusion. J Differential Equ, 2011, 251:1670-1695 |