[1] Aoki T. On the stability of the linear transformation in Banach spaces. J Math Soc Japan, 1950, 2: 64-66
[2] Azadi Kenary H. Random approximation of an additive functional equation of m-Appollonius type. Acta Math Sci, 2012, 32B: 1813-1825
[3] Azadi Kenary H. Approximation of a Cauchy-Jensen functional equation in non-Archimedean normed spaces. Acta Math Sci, 2012, 32B: 2247-2258
[4] Cholewa P W. Remarks on the stability of functional equations. Aequationes Math, 1984, 27: 76-86
[5] Ebadian A, Nikoufar I, Rassias Th M, Ghobadipour N. Stability of generalized derivations on Hilbert C*- modules associated with a Pexiderized Cauchy-Jensen type functional equation. Acta Math Sci, 2012, 32B: 1226-1238
[6] Fechner W. Stability of a functional inequalities associated with the Jordan-von Neumann functional equation. Aequationes Math, 2006, 71: 149-161
[7] G?vruta P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl, 1994, 184: 431-43
[8] Gilányi A. Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequationes Math, 2001, 62: 303-309
[9] Gilányi A. On a problem by K Nikodem. Math Inequal Appl, 2002, 5: 707-710
[10] Hyers D H. On the stability of the linear functional equation. Proc Natl Acad Sci, 1941, 27: 222-224
[11] Park C, Cho Y, Han M. Functional inequalities associated with Jordan-von Neumann-type additive functional equations. J Inequal Appl, 2007, 2007: Article ID 41820
[12] Rassias Th M. On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc, 1978, 72: 297-300
[13] Rätz J. On inequalities associated with the Jordan-von Neumann functional equation. Aequationes Math, 2003, 66: 191-200
[14] Skof F. Propriet locali e approssimazione di operatori. Rend Sem Mat Fis Milano, 1983, 53: 113-129
[15] Ulam S M. A Collection of the Mathematical Problems. New York: Interscience Publ, 1960 |