[1] Abdenur F, Díaz L J. Pseudo-orbit shadowing in the C1 topology. Disc Contin Dynam Syst A, 2007, 17: 223-245
[2] Ahn J, Lee K, Lee M. Homoclinic classes with shadowing. J Inequal Appl, 2012, 2012: 97
[3] Arbieto A. Periodic orbits and expansiveness. Math Zeitschrift, 2011, 269: 801-807
[4] Arbieto A, Matheus C. A pasting lemma and some applications for conservative systems. Ergod Th & Dynam Sys, 2007, 27: 1399-1417
[5] Arbieto A, Catalan T. Hyperbolicity in the volume preserving scenario. Ergod Th & Dynam Sys, 2013, 33(6): 1644-1666
[6] Arbieto A, Armijo A, Catalan T, Senos T. Symbolic Extensions and dominated splitting for Generic C1- Diffeomorphisms. Math Zeitschrift, 2013, 275(3/4): 1239-1254
[7] Arbieto A, Senos L, Sodero T. The specification property for flows from the robust and generic view point. Jr Diff Eq, 2012, 253(6): 1893-1909
[8] Avila A. On the regularization of conservative maps. Acta Mathematica, 2010, 205: 5-18
[9] Bessa M. Generic incompressible flows are topological mixing. Comptes Rendus Mathematique, 2008, 346: 1169-1174
[10] Bessa M. C1-stably shadowable conservative diffeomorphisms are Anosov. B Korean Math Soc, 2013, 50(5): 1495-1499
[11] Bessa M, Duarte P. Abundance of elliptic dynamics on conservative 3-flows. Dynamical Systems - An international Journal, 2008, 23(4): 409-424
[12] Bessa M, Rocha J. On C1-robust transitivity of volume-preserving flows. Jr Diff Eq, 2008, 245(4): 3127- 3143
[13] Bessa M, Rocha J. Three-dimensional conservative star flows are Anosov. Discrete and Continuous Dynamical Systems - A, 2010, 26(3): 839-846
[14] Bessa M, Rocha J, Torres M J. Shades of Hyperbolicity for Hamiltonians. Nonlinearity, 2013, 26(10): 2851-2873
[15] Bonatti C, Crovisier S. Récurrence et généricité. Invent Math, 2004, 158(1): 33-104
[16] Bonatti C, Díaz L J. Abundance of C1-robust homoclinic tangencies. Trans Amer Math Soc, 2012, 364(10): 5111-5148
[17] Bonatti C, Díaz L J, Pujals E R. A C1-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources. Annals Math, 2003, 158(2): 355-418
[18] Bowen R. Periodic points and measures for Axiom A diffeomorphisms. Trans Amer Math Soc, 1971, 154: 377-397
[19] Bowen R. ω-limit sets for Axiom A diffeomorphisms. Jr Diff Eq, 1975, 2: 333-339
[20] Bowen R. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math 470. 2nd Edition. 2008
[21] Bowen R, Walters P. Expansive one-parameter flows. Jr Diff Eq, 1972, 12: 180-193
[22] Catalan T. A generic condition for existence of symbolic extension of volume preserving diffeomorphisms. Nonlinearity, 2012, 25: 3505-3525
[23] Catalan T, Tahzibi A. A lower bound for topological entropy of generic non Anosov symplectic diffeomorphisms. Ergod Th & Dynam Sys, 2014, 34(5): 1503-1524
[24] Denker M, Grillenberger C, Sigmund K. Ergodic Theory on Compact Spaces//Lecture Notes in Math 527. Berlin: Springer-Verlag, 1976
[25] Doering C. Persistently transitive vector fields on three-dimensional manifolds. Proceedings on Dynamical Systems and Bifurcation Theory, 160. Pitman, 1987: 59-89
[26] Ferreira C. Stability properties of divergence-free vector fields. Dynamical Systems - An international Journal, 2012, 27: 223-238
[27] Ferreira C. Shadowing, expansiveness and stability of divergence-free vector fields. B Korean Math Soc, 2014, 51(1): 67-76
[28] Lee K, Sakai K. Structural stability of vector fields with shadowing. Jr Diff Eq, 2007, 232: 352-367
[29] Lee K, Wen X. Shadowable chain transitive sets of C1-generic diffeomorphisms. B Korean Math Soc, 2012, 49(2): 263-270
[30] Mãné R. An ergodic closing lemma. Annals Math, 1982, 116(3): 503-540
[31] Mãné R. Expansive diffeomorphisms//Lecture Notes in Math. Berlin: Springer, 1975, 468: 162-174
[32] Moreira C G. There are no C1-stable intersections of regular Cantor sets. Acta Math, 2011, 206(2): 311-323
[33] Moriyasu K, Sakai K, Sun W. C1-stably expansive flows. Jr Diff Eq, 2005, 213(2): 352-367
[34] Moser J. On the volume elements on a manifold. Trans Amer Math Soc, 1965, 120: 286-294
[35] Newhouse S. Quasi-elliptic periodic points in conservative dynamical systems. Am J Math, 1977, 99: 1061- 1087
[36] Pacifico M J, Pujals E R, Vieitez J L. Robustly expansive homoclinic classes. Ergod Th & Dynam Sys, 2005, 25(1): 271-300
[37] Pugh C, Robinson C. The C1 Closing lemma, including hamiltonians. Ergod Th & Dynam Sys, 1983, 3: 261-313
[38] Pilyugin S. Theory of shadowing pseudotrajectories in dynamical systems. Differ Uravn Protsessy Upr, 2011, 4: 96-112
[39] Ribeiro R. Hyperbolicity and types of shadowing for C1-generic vector fields. Discrete Contin Dyn Syst, 2014, 34(7): 2963-2982
[40] Robinson C. Generic properties of conservative systems. Amer J Math, 1970, 92: 747-817
[41] Robinson C. Stability theorems and hyperbolicity in dynamical systems. Rocky Mountain J Math, 1977, 7: 425-437
[42] Ruggiero R. Persistently Expansive Geodesic Flows. Commun Math Phys, 1991, 140: 203-215
[43] Sakai K. Pseudo orbit traing property and strong transversality of diffeomorphisms of closed manifolds. Osaka J Math, 1994, 31: 373-386
[44] Sakai K. C1-stably shadowable chain components. Ergod Th & Dynam Sys, 2008, 28(3): 987-1029
[45] Sakai K, Sumi N, Yamamoto K. Diffeomorphisms satisfying the specification property. Proc Amer Math Soc, 2010, 138(1): 315-321
[46] Senos L. Generic Bowen-expansive flows. Bull Braz Math Soc, 2012, 43(1): 59-71
[47] Tian X, Sun W. Diffeomorphisms with various C1-stable properties. Acta Mathematica Scientia, 2012, 32B(2): 552-558
[48] Wen X, Gan S, Wen L. C1-stably shadowable chain components are hyperbolic. Jr Diff Eq, 2009, 246: 340-357
[49] Yang D, Gan S. Expansive homoclinic classes. Nonlinearity, 2009, 22(4): 729-733
[50] Zehnder E. Note on smoothing symplectic and volume-preserving diffeomorphisms. Geometry and Topology. Proc III Latin Amer School of Math, Inst Mat Pura Aplicada CNPq, Riode Janeiro, 1976; Lecture Notes in Math 597, 1977: 828-854 |