[1] Acary V, Rogliato B, Goeleven D. Higher oder Moreau's seeping process: Mathematical formulation and numerical simulation. Math Program Ser A, 2008, 113: 133-217
[2] Alber Y. The regularization method for variational inequalities with nonsmooth unbounded operator in Banach space. Appl Math Lett, 1993, 6: 63-68
[3] Baiocchi C, Capelo A. Variational and Quasi-Variational Inequalities: Application to Free Boundary Prob- lems. London, New York: Wiley, 1984
[4] Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems. New York: Springer-Verlag, 2003
[5] Gavrea B I, Anitescu M, Potra F A. Convergence of a class of semi-implicit time-stepping schemes for nonsmooth rigid multibody dynamic. SIAM J Optim, 2008, 19: 969-1001
[6] Glowinski R, Lions J L, Tremolieres R. Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam, 1981
[7] Han L S, Pang J S. Non-zenoness of a class of differential quasi-variational inequalities. Math Program Ser A, 2010, 121: 171-199
[8] Harker P T, Pang J S. Finite-dimensional Variational Inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math Program, 1990, 48B: 161-220
[9] He B S, Liu H X. Inverse variational inequalities in economics-applications and algorithms. Sciencepaper Online, 2006
[10] He B S, Liu H X, Li M, He X Z. PPA-based methods for monotone inverse variational inequalities. Scien- cepaper Online, 2006
[11] He B S, He X Z, Liu H X. Solving a class of constrained black-box inverse variational inequalities. Eur J Oper Res, 2010, 204: 391-401
[12] He X Z, Liu H X. Inverse variational inequalities with projection-based solution methods. Eur J Oper Res, 2011, 208: 12-18
[13] Hu R, Fang Y P. Levitin-Polyak well-posedness by perturbations of inverse variational inequalities. Optim Lett, 2013, 7: 343-359
[14] Hu R, Fang Y P. Well-posedness of inverse variational inequalities. J Convex Anal, 2008, 15: 427-437
[15] Konnov I V, Volotskaya E O. Mixed variational inequalities and economic equilibrium problems. J Appl Math, 2002, 2: 289-314
[16] Li X, Li X S, Huang N J. A generalized f-projection algorithm for inverse mixed variational inequalities. Optim Lett, 2014, 8: 1063-1076
[17] Li X S, Huang N J, O'Regan D. Differential mixed variational inqualities in finite dimensional spaces. Nonlinear Anal, 2010, 72: 3875-3886
[18] Lions J L. Quelques Méthodes de Résolution des Problemés aux Limites Non Linéaires. Dunod, Gauthier- Villars, Paris, 1969
[19] Pang J S, Stewart D. Differential variational inqualities. Math Program, 2008, 113A: 345-424
[20] Pang J S, Shen J. Strongly regular differential variational systems. IEEE Trans Automat Control, 2007, 52: 242-255
[21] Raghunathan A U, Pérez-Correa J R, Agosin E, Biegler L T. Parameter estimation in metabolic flux balance models for batch fermentation-formulation and solution using differential variational inequalities. Ann Oper Res, 2006, 148: 251-270
[22] Scrimali L. An inverse variational inequality approach to the evolutionary spatial price equilibrium problem. Optim Eng, 2012, 13: 375-387
[23] Stewart D E. Uniqueness for index-one differential variational inequalities. Nonlinear Anal Hybrid Syst, 2008, 2: 812-818
[24] Stewart D E. Convergence of a time-stepping scheme for rigid body dynamics and resolution of painlevé's problem. Arch Ration Mech Anal, 1998, 145: 215-260
[25] Wang X, Huang N J. Differential vector variational inequalities in finite-dimensional spaces. J Optim Theory Appl, 2013, 158: 109-129
[26] Wu K Q, Huang N J. The generalized f-projection operator and set-valued variational inequalities in Banach spaces. Nonlinear Anal, 2009, 71: 2481-2490
[27] Yang J. Dynamic power price problem: an inverse variational inequality approach. J Ind Manag Optim, 2008, 4: 673-684
[28] Yao J C. Multi-valued variational inequalities with K-pseudomonotone operators. J Optim Theory Appl, 1994, 83: 391-403
|