数学物理学报(英文版) ›› 2015, Vol. 35 ›› Issue (1): 182-188.doi: 10.1016/S0252-9602(14)60149-1

• 论文 • 上一篇    下一篇

TOEPLITZ OPERATORS ASSOCIATED WITH SEMIFINITE VON NEUMANN ALGEBRA

闫成|吐尔德别克   

  1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China
  • 收稿日期:2013-12-12 修回日期:2014-05-22 出版日期:2015-01-20 发布日期:2015-01-20
  • 通讯作者: 吐尔德别克,bek@xju.edu.cn E-mail:yanchengggg@163.com; bek@xju.edu.cn
  • 基金资助:

    This research was partly supported by Natural Science Foundation of the Xinjiang Uygur Autonomous Region (2013211A001).

TOEPLITZ OPERATORS ASSOCIATED WITH SEMIFINITE VON NEUMANN ALGEBRA

YAN Cheng,BEKJAN Turdebek N   

  1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China
  • Received:2013-12-12 Revised:2014-05-22 Online:2015-01-20 Published:2015-01-20
  • Contact: BEKJAN Turdebek N,bek@xju.edu.cn E-mail:yanchengggg@163.com; bek@xju.edu.cn
  • Supported by:

    This research was partly supported by Natural Science Foundation of the Xinjiang Uygur Autonomous Region (2013211A001).

摘要:

Let H2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M , we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H2(M), and the norm of Toeplitz operator Tt is equivalent to ktk when t is hyponormal operator in M.

关键词: numerical spectrum, hyponormal toeplitz operator, semifinite von Neumannalgebra, noncommutative Hardy space

Abstract:

Let H2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M , we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H2(M), and the norm of Toeplitz operator Tt is equivalent to ktk when t is hyponormal operator in M.

Key words: numerical spectrum, hyponormal toeplitz operator, semifinite von Neumannalgebra, noncommutative Hardy space

中图分类号: 

  • 46L51