[1] Aiena P. Fredholm and Local Spectral Theory, with Application to Multipliers. Dordrecht: Kluwer Aca-demic Publishers, 2004
[2] Berberian S K. The Weyl spectrum of an operator. Indiana Univ Math J, 1970, 20: 529–544
[3] Cao X H. Analytically class A operators and Weyl’s theorem. J Math Anal Appl, 2006, 320: 795–803
[4] Coburn L A. Weyl’s theorem for nonnormal operators. Michigan Math J, 1966, 13: 285–288
[5] Conway J B. A Course in Functional Analysis. 2nd ed. New York: Springer-Verlag, 1990
[6] Duggal B P, Jeon I H, Kim I H. On -paranormal contractions and properties for -class A operators. Linear Algebra Appl, 2012, 436: 954–962
[7] Foias C, Frazho A E. The Commutant Lifting Approach to Interpolation Problem. Basel: Birkh¨auser Verlag, 1990
[8] Han J K, Lee H Y, Lee W Y. Invertible completions of 2×2 upper triangular operator matrices. Proc Amer Math Soc, 2000, 128: 119–123
[9] Harte R E. Fredholm, Weyl and Browder theory. Proc Royal Irish Acad, 1985, 85A: 151–176
[10] Harte R E. Invertibility and Singularity for Bounded Linear Operators. New York: Marcel Dekker Inc, 1988
[11] Lee W Y. Weyl spectra of operator matrices. Proc Amer Math Soc, 2001, 129: 131–138
[12] Lee W Y. Weyl’s theorem for operator matrices. Integr Equ Oper theory, 1998, 32: 319–331
[13] Lee W Y, Lee S H. A spectral mapping theorem for the Weyl spectrum. Glasgow Math J, 1996, 38: 61–64
[14] Mecheri S. Isolated points of spectrum of k-quasi--class A operators. Studia Math, 2012, 208: 87–96
[15] Oberai K K. On the Weyl spectrum. Illinois J Math, 1974, 18: 208–212
[16] Oudghiri M. Weyl’s theorem and perturbations. Integr Equ Oper theory, 2005, 53: 535–545
[17] Pearcy C M. Some Recent Developments in Operator Theory. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, 1975
[18] Rashid M H. Weyl’s type theorems and hypercyclic operators. Acta Math Sci, 2012, 32B(2): 539–551
[19] Shen J L, Zuo F, Yang C S. On operators satisfying T|T2|T T|T|2T. Acta Math Sinica (English Series), 2010, 26(11): 2109–2116
[20] Zuo F, Zuo H L. Weyl’s theorem for algebraically quasi--A operators. Banach J Math Anal, 2013, 7(1): 107–115
[21] Zuo H L, Zuo F. A note on n-perinormal operators. Acta Math Sci, 2014, 34B(1): 194–198 |