数学物理学报(英文版) ›› 2012, Vol. 32 ›› Issue (4): 1435-1440.doi: 10.1016/S0252-9602(12)60112-X
王慧群1|陈晓友2|曾吉文3
WANG Hui-Qun1, CHEN Xiao-You2, ZENG Ji-Wen3
摘要:
The authors obtain a sufficient condition to determine whether an element is a vanishing regular element of some Brauer character. More precisely, let G be a finite group and p be a fixed prime, and H = G'′Op' (G); if g ∈ G0− H0 with o(gH) coprime to the number of irreducible p-Brauer characters of G, then there always exists a nonlinear irreducible p-Brauer character which vanishes on g. The authors also show in this note that the sums of certain irreducible p-Brauer characters take the value zero on every element of G0− H0.
中图分类号: