[1] Besse A. Einstein Manifolds. Berlin: Springer-Verlag, 1987
[2] Bochner S. Curvature and Betti numbers. II. Ann of Math, 1949, 50: 77–93
[3] Brendle S. Uniqueness of gradient Ricci soliton. arxiv:1010.3684v1, 2010
[4] Bryant R L. Ricci flow solitons in dimension three with SO(3)-symmetries[OL]. http://www.math.duke.edu/bryant/3DRotSymRicciSolitons.pdf
[5] Bryant R L. Gradient K¨ahler-Ricci solitons. Ast´erisque, 2008, 321: 51–97
[6] Cao H D. Existence of gradient K¨ahler-Ricci solitons//Elliptic and Parabolic Methods in Geometry, 1994: 1–16
[7] Cao H D. Limits of solutions to the K¨ahler-Ricci flow. J Diff Geom, 1997, 45: 257–272
[8] Cao H D. Recent progress on Ricci solitons. Adv Lect Math (ALM), 2010, 11: 1–38
[9] Cao H D, Chen Q. On locally conformally flat gradient steady Ricci solitons. Trant Amer Math Soc, 2012, 364: 2377–2391
[10] Cao H D, Hamilton R S. Gradient K¨ahler-Ricci soliton and periodic orbits. Comm Anal Geom, 2000, 8(3): 517–529
[11] Catino G, Mantegazza C. Envolution of the Weyl tensor under the Ricci flow. Ann Inst Fourier, 2011, 61: 1407–1435
[12] Chau A, Tam L F. On the complex structure of K¨ahler manifolds with nonnegative curvature. J Diff Geom, 2003, 73: 491–530
[13] Chau A, Tam L F. A note on the uniformization of gradient K¨ahler-Ricci solitons. Math Res Lett, 2005, 12: 19–21
[14] Chen B L. Strong uniqueness of the Ricci flow. J Diff Geom, 2009, 82: 363–382
[15] Guo H X. Area growth rate of the level surface of the potential function on the 3-dimensional steady Ricci soliton. Proc Amer Math Soc, 2009, 137: 2093–2097
[16] Hamilton R S. The Ricci flow on surfaces//Contemporary Mathematics, 1986, 71: 237–261
[17] Hamilton R S. The formation of singularities in the Ricci flow. In Surveys in Diff Geom, 1995, 2: 7–136
[18] Perelman G. The entropy formula for the Ricci flow and its geometric applications. arxiv:0211159, 2002
[19] Sitaramayya M. Curvature tensors in K¨ahler manifolds. Trans Amer Math Soc, 1973, 183: 341–353
[20] Zhang Z H. Gradient shrinking solitons with vanishing Weyl tensor. Pacific J Math, 2009, 242(1): 189–200 |