[1] Benilov E S, Grimshaw R, Kuznetsova E P. The generationof radiating waves in a singularly-perturbed Koreteweg-de Vries equation. Phys D, 1993, 69: 270–278
[2] Bejennaru I, Tao T. Sharp well-posedness and ill-posedness results for a quadratic non-linear Schr¨odinger equation. J Funct Analysis, 2006, 233: 228–259
[3] Bona J L, Smith R S. A model for the two-ways propagation of water waves in a channel. Math Proc Cambridge Philos Soc, 1976, 79: 167–182
[4] Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schrodinger equation, Part II: The KdV equation. Geom Funct Analysis, 1993, 3: 107–156; 209–262
[5] Bourgain J. Periodic Korteweg de Vries equation with measures as initial data. Selecta Math (NS), 1997, 3: 115–159
[6] Chen W G, Li J F, Miao C X, Wu J H. Low regularity solutions of two fifth-order KdV type equations. J D’Anal Math, 2009, 107: 221–238
[7] Chen W G, Liu Z P. Well-posedness and ill-posedness for a fifth-order shallow water wave equation. Nonlinear Analysis, 2010, 72: 2412–2420
[8] Hunter J K, Scheurle J. Existence of perturbed solitary wave solutions to a model equation for water waves. Phys D, 1988, 32: 253–268
[9] Huo Z H. The Cauchy problem for the fifth-order shallow water equation. Acta Math Sin Appl Engl Ser, 2005, 21(3): 441–454
[10] Jia Y L, Huo Z H. Well-posedness for the fifth-order shallow water equations. J Diff Eqns, 2009, 246: 2448–2467
[11] Kawahara T. Oscillatory solitary waves in dispersive media. J Phys Soc Japan, 1972, 33: 260–264
[12] Kaup D J. On the inverse scattering problem for cubic eigenvalue problems of the class ψxxx + 6Qψ x + 6Rψ = λΨ . Stud Appl Math, 1980, 62(3): 189–216
[13] Kenig C E, Ponce G, Vega L. The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices. J Duke Math, 1993, 71: 1–21
[14] Kenig C E, Ponce G, Vega L. A bilinear estimate with applications to the KdV equation. J Amer Math Soc, 1996, 9: 573–603
[15] Kichenassamy S, Olver P J. Existence and nonexistence of solitary wave solutions to higher-order model evolution equations. SIAM J Math Anal, 1992, 23: 1141–1166
[16] Kupershmidt B A. A super Korteweg-de Vries equation: An integrable system. Phys Lett A, 1984, 102(5/6): 213–215
[17] Tao T. Multilinear weighted convolution of L2 functions, and applications to non-linear dispersive equations. Amer J Math, 2001, 123: 839–908
[18] Tzvetkov N. Remark on the local ill-posedness for KdV equation. C R Acad Sci Paris, 1999, 329: 1043–1047
[19] Yan W, Li Y S, Yang X Y. The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity. Mathematical and Computer Modelling, 2011, 54: 1252–1261
[20] Shen C X, Guo B L. III-posedness for the nonlinear davey-stewartson equation. Acta Mathematica Scientia, 2008, 28B(1): 117–127 |