[1] Jiang C, Meng D. The derivation algebra and the universal central extension of the q-analog of the Virasoro-like algebra. Comm Alg, 1998, 26: 1335–1346
[2] Kirkman E, Procesi C, Small L. A q-Analog for the virasoro algebra. Comm Alg, 1994, 22: 3755–3774
[3] Su Y, Zhao K, Zhu L. Simple color algebras of Weyl type. Israel J Math, 2003, 137: 109–123
[4] Lin S, Wu Y. Representations of the quantized Weyl algebra associated to the quantum plane. Algebra Colloq, 2005, 12: 715–720
[5] Su Y. Quasi-finite representations of a Lie algebra of Block type. J Algbra, 2004, 276: 117–128
[6] Su Y. Quasi-finite representations of a family of Lie algebras of Block type. J Pure Appl Alg, 2004, 192: 293–305
[7] Xu X. Generalizations of Block algebras. Manuscripta Math, 1999, 100: 489–518
[8] Yasuyuki K. Conformal Quantum Field Theory and Subfactors. Acta Mathematica Sinica, 2003, 9(3): 557–566
[9] Su Y. Classification of Harish-Chandra modules over the higher rank Virasoro algebras. Comm Math Phys, 2003, 240: 539–551
[10] Su Y. On indecomposable modules over the Virasoro algebra. Science in China A, 2001, 44: 980–983
[11] Su Y. Structure of a new class of non-graded infinite-dimensional simple Lie algebras. J Algebra, 2003, 267: 542–558
[12] Su Y, Zhou J. Structure of the Lie algebras related to those of Block. Comm Algebra, 2002, 30: 3205–3226
[13] Su Y. Derivations and structure of the Lie algebras of Xu type. Manuscripta Math, 2001, 105: 483–500
[14] Lin S, Xin B. Representations of a noncommutative associative algebra related to Quantum Torus of Rank Three. Acta Mathematica Sinice, English Series, 2005, 176: 1521–1524
[15] Berman S, Dong C, Tan S. Representations of a class of lattice type vertex algebras. J Pure and Applied Algebra, 2002, 176: 27–47
[16] Su Y, Zhao K. Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series. J Algebra, 2002, 252: 1–19
[17] Ye C. Representations of a class of associative algebras relate to the quantum torus. Chinese Ann Math A, 2004, 25(2): 179–188 |