[1] Bouchut F. Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions. J Funct Anal, 1993, 111(1): 239–258
[2] Bouchut F. Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system. J Differ Equ, 1995, 122(2): 225–238
[3] Carrillo J A, Soler J. On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in Lp spaces. Math Methods Appl Sci, 1995, 18(10): 825–839
[4] Carrillo J A, Soler J. On the Vlasov-Poisson-Fokker-Planck equations with measures in Morrey spaces as initial data. J Math Anal Appl, 1997, 207: 475–495
[5] Cercignani C, Gamba I M, Jerome J W, Shu C W. Device benchmark comparisons via kinetic, hydrody-namic, and high-field models. Comput Methods Appl Mech Engrg, 2000, 181: 381–392
[6] Chang J, Cooper G. A practical difference scheme for Fokker-Planck equations. J Comput Phys, 1970, 6(1): 1–16
[7] Degond P. Global existence of smooth solutions of Vlasov-Fokker-Planck equation in 1 and 2 space dimen-sions. Ann Sci ´Ecole Norm Sup (4), 1986, 19(4): 519–542
[8] Epperlein E M. Implicit and conservative difference scheme for the Fokker-Planck equation. J Comput Phys, 1994, 112(2): 291–297
[9] Filbet F, Jin S. A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources. J Comput Phys, 2010, 229(20): 7625–7648
[10] Goudon T, Nieto J, Poupaud F, Soler J. Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system. J Differ Equ, 2005, 213: 418–442
[11] Goudon T, Jin S, Yan B. Simulation of fluid-particle flows: heavy particles, flowing regime and asymptotic-preserving schemes. Preprint.
[12] Goudon T, Jin S, Liu J, Yan B. Asymptotic-preserving schemes for kinetic-fluid modeling of disperse two-phase flows. Comm Math Sci, 2012, 10, to appear
[13] Haack J, Jin S, Liu J. An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations. Preprint.
[14] Havlak K J, Victory H D Jr. The numerical analysis of random of random particle methods applied to Vlasov-Poisson-Fokker-Planck kinetic equations. SIAM J Numer Anal, 1996, 33(1): 291–317
[15] Havlak K J, Victory H D. On determinstic particle methods for solving Vlasov-Poisson-Fokker-Planck systems. SIAM J Numer Anal, 1998, 35(4): 1473–1519
[16] Jin S. Efficient asymptotic-preserving schemes for some multiscale kinetic equations. SIAM J Sci Comp, 1999, 21(2): 441–454
[17] Jin S. Asymptotic preserving (AP) schemes for multicale kinetic and hyperbolic equations: a review//Lecture Notes for Summer School on “Methods and Models of Kinetic Theory”, Porto Ercole (Grosseto, Italy), 2010. Rivista di Matematica della Universita di Parma.
[18] Jin S, Yan B. A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation. J Comp Phys, 2011, 230: 6420–6437
[19] Larsen E W, Levermore C D, Pomraning G C, Sanderson J G. Discretization methos for one-dimensional Fokker-Planck operators. J Comput Phys, 1985, 61: 359–390
[20] LeVeque R J. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge: Cambridge University Press, 2002
[21] Nieto J, Poupaud F, Soler J. High-field limit for the Vlasov-Poisson-Fokker-Planck system. Arch Ration Mech Anal, 2002, 158: 20–59
[22] Poupaud F. Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory. Z Angew Math Mech, 1992, 72(8): 359–372
[23] Poupaud F, Soler J. Parabolic limit and stability of the Vlasov-Fokker-Planck system. Math Models Methods Appl Sci, 2000, 10(7): 1027–1045
[24] Schaeffer J. Convergence of a difference scheme for the Vlasov-Poisson-Fokker-Planck system in one di-mension. SIAM J Numer Anal, 1998, 35(3): 1149–1175
[25] Victory H D. On the existence of global weak solutions for VPFP systems. J Math Anal Appl, 1991, 160: 515–553
[26] Wollman S, Ozizmir E. Numerical approximation of the Vlasov-Poisson-Fokker-Planck system in one di-mension. J Comput Phys, 2005, 202(2): 602–644
[27] Wollman S, Ozizmir E. Numerical approximation of the Vlasov-Poisson-Fokker-Planck system in two dimensions. J Comput Phys, 2009, 228(18): 6629–6669
[28] Zheng Y, Majda A. Existence of global weak solutions to one-component Vlasov-Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data. Comm Pure Appl Math, 1994, 47(10): 1365–1401 |