[1] Ambarzumyan V A. ¨Uber eine Frage der Eigenwerttheorie. Z Phys, 1929, 53: 690–695
[2] Atkinson F V. Discrete and Continuous Boundary Problems. New York: Acad Press Inc, 1964
[3] Benedek A I, Panzone R. On inverse eigenvalue problems for a second-order differential equation with parameter contained in the boundary conditions. Notas Algebra Anal, 1980, 9: 1–13
[4] Binding P A, Browne P J, Watson B A. Inverse spectral problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions. J London Math Soc, 2000, 62: 161–182
[5] Binding P A, Browne P J, Watson B A. Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter II. J Comput Appl Math, 2002, 148: 147–168
[6] Bochner S, Chandrasekharan K. Fourier Transforms (Annals of Mathematics Studies, No.19). Princeton: Princeton University Press, 1949
[7] Borg G. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Bestimmung der Differentialgleichung durch die Eigenwerte. Acta Math, 1946, 78: 1–96
[8] Borg G. Uniqueness theorems in the spectral theory of y′′ + (λ − q(x))y = 0//Proc 11th Scandinavian Congress of Mathematicians. Oslo: Johan Grundt Tanums Forlag, 1952: 276–287
[9] Chakravarty N K, Acharyya S K. On an extension of the theorem of V. A. Ambarzumyan. Proc Roy Soc Edinburgh, 1988, 110(A): 79–84
[10] Chern H H, Shen C L. On the n-dimensional Ambarzumyan’s theorem. Inverse Problems, 1997, 13: 15–18
[11] Collatz L. Eigenwertaufgaben mit Technischen Anwendungen. Leipzig: Akademische Verlag, 1963
[12] Fulton C T. Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc Roy Soc Edinburgh, 1997, 77(A): 293–308
[13] Fulton C T. Singular eigenvalue problems with eigenparameter contained in the boundary conditions. Proc Roy Soc Edinburgh, 1980, 87(A): 1–34
[14] Guliyev N J. Inverse eigenvalue problems for Sturm-Liouville equation with spectral parameter linearly contained in one of the boundary conditions. Inverse Problems, 2005, 21: 1315–1330
[15] Harrell E M. On the extension of Ambarzunyan’s inverse spectral theorem to compact symmetric spaces. Amer J Math, 1987, 109: 787–795
[16] Hochstadt H, Lieberman B. An inverse Sturm-Liouville problem with mixed given data. SIAM J Appl Math, 1978, 34: 676–680
[17] Horv´ath M. On a theorem of Ambarzumyan. Proc Roy Soc Edinburgh, 2001, 131(A): 899–907
[18] Kuznetsov N V. Generalization of a theorem of V. A. Ambarzumyan (in Russian). Doklady Akad Nauk SSSR, 1962, 146: 1259–1262
[19] Levitan B. M. and Gasymov M. G. Determination of a differential equation by two of its spectra. Uspekhi Mat Nauk, 1964, 19: 3–63
[20] Levitan B M, Sargsjan I S. Sturm-Liouville and Dirac Operators. Dodrecht, Boston, London: Kluwer Academic Publishers, 1991
[21] Marchenko V A. Sturm-Liouville Operators and Their Applications, Naukova Dumka, Kiev, 1977; English transl: Birkhäuser, 1986
[22] Márton K. An n-dimensional Ambarzumyan type theorem for Dirac operators. Inverse Problems, 2004, 20: 1593–1597
[23] Pivovarchik V N. Ambarzumyan’s theorem for a Sturm-Liouville boundary value problem on a star-shaped graph. Funct Anal Appl, 2005, 39: 148–151
[24] Walter J. Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math Z, 1973, 133: 301–312
[25] Yang C F, Huang Z Y. Inverse spectral problems for 2m-dimensional canonical Dirac operators. Inverse Problems, 2007, 23: 2565–2574
[26] Yang C F, Yang X P. Some Ambarzumyan-type theorems for Dirac operators. Inverse Problems, 2009, 25(9): 095012(13pp)
[27] Yang C F, Huang Z Y, Yang X P. Ambarzumyan-type theorems for the Sturm-Liouville equation on a graph. Rocky Mountain J Math, 2009, 39: 1353–1372
[28] Yang C F, Yang X P. Ambarzumyan’s theorems for Sturm-Liouville operators with general boundary conditions. Acta Math Sci, 2010, 30A(2): 449–455 |