[1] Aizenman M, Simon B. Brownian motion and Harnack's inequality for Schr\"{o}dinger operators. Comm pure Appl Math, 1982, 35: 290--297
[2] Brummelhuis R. Three-spheres theorem for second order elliptic equations. J d'Anal Math, 1995, 65: 179--206
[3] Carleman T. Sur un problème d'unicitè pour les systèmes dèquations aux derivèes partielles a deux variables independentes. Ark Mat, 1939, 26B: 1--9
[4] Chiarenza F, Fabes E B, Garofalo N. Harnack's inequality for Schr\"{o}dinger operators and the continuity of solutions. Proc Amer Soc, 1986, 98(3): 415--425
[5] Canuto B, Rosset E, Vessella S. Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries. Tran Amer Math Soc, 2002, 354(2): 491--535
[6] Donnelly H, Frfferman C. Nodal sets of eigenfunctions on Riemannian manifolds. Invent Math, 1988, 93: 161--183
[7] Garofalo N, Lin F H. Monotonicity properties of variational integrals, Ap weights and unique continuation. Indiana Univ Math J, 1986, 35: 245--268
[8] Garofalo N, Lin F H. Unique continuation for elliptic operators: a geometric-variational approach. Comm pure Appl Math, 1987, 40(3): 347--366
[9] Jerison D, Kenig C E. Unique continuation and absence of positive eigenvalues for Schr\"odinger operators. Annal of Math, 1985, 121: 463--494
[10] Korevaar J, Meyers J L H. Logarithmic convexity for supremum norms of harmonic functions. Bull London Math Soc, 1994, 26: 353--362
[11] Kukavica I. Nodal volumes for eigenfunction of analytic regular elliptic problems. J Anal Math, 1995, 67: 269--280
[12] Kukavica I. Quantitative uniqueness for second-order elliptic operators. Duke Math J, 1998, 91(2): 225--240
[13] Kurata K. A unique continuation theorem for uniformly elliptic equations with strongly singular potentials. Commun in Partial Differential Equations, 1993, 18(7/8): 1161--1189
[14] Landis E M. Some problems of the qualitative theory of second order elliptic equation. Russian Math Surveys, 1963, 18: 1--62
[15] Lin F H. Nodal set of solutions of elliptic and parabolic equations. Comm Pure Appl Math, 1991, 45: 287--308
[16] Lu G Z, Wolff T. Unique continuation with weak type lower order terms. Potential Anal, 1997, 7(2): 603--614
[17] Simon B. Schrodinger semigroups. Bull Amer Math Soc, 1982, 7(3): 447--521
[18] Tao X X. Doubling properties and unique continuation at the boundary for elliptic operators with singular magnetic fields. Studia Mathematica, 2002, 151(1): 31--48
[19] Tao X X, Zhang S Y. On the unique continuation properties for elliptic operators with singular potentials. Acta Math Sinica, Einglish Series, 2007, 23(2): 297--308
[20] Tao X X, Zhang S Y. Weighted doubling properties and unique continuation theorems for the degenerate Schrodinger equations with singular potentials. J Math Anal Appl, 2008, 339(1): 70--84
[21] Tao X X, Zhang S Y. The doubling properties and unique continuations for the weak solutions of parabolic equations with non-smoothness coefficients. Chinese Annals Math, 2006, 27A}(6): 853--864 (in Chinese) |