[1] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical exponents. Comm Pure Appl Math, 1983, 34: 437--477
[2] Azorero J G, Alonso I P. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans Amer Math Soc, 1991, 323: 877--895
[3] Ben-Naoum A K, Troestler C, Willem M. Extrema problems with critical Sobolev exponents on unbounded dommains. Nonlinear Analysis, 1996, 26: 823--833
[4] Bianchi G, Chabrowski J, Szulkin A. On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent. Nonlinear Analysis, 1995, 25: 41--59
[5] Lions P L. The concentration-compactness principle in the caculus of variation. The limit case. Revista Mat. Iberoamer, 1985, 1: 45--120; 145--201
[6] Jannelli E. The role played by space dimension in elliptic critical problems. J Differential Equations, 1999, 156: 407--426
[7] Ferrero A, Gazzola F.Existence of solutions for singular critical growth semilinear elliptic equations. J Differntial Equations, 2001, 177: 494--522
[8] Ghoussoub N, Yuan C G. Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponets. Trans Amer Math Soc, 2000, 352: 5703--5743
[9] Li S J, Zou W M. Remarks on a class of elliptic problems with critical exponents. Nonlinear Analysis, 1998, 32: 769--774
[10] Zou W M. On finding sign-changing solutions. J Functional Analysis, 2006, 234: 364--419
[11] Cao D M, Peng S J. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J Differential Equations, 2003, 193: 424--434
[12] Kang D S, Peng S J. Existence of solutions for elliptic problems with critical Sobolev-Hardy exponents. Israel J Mathematics, 2004, 143: 281--297
[13] Kang D S, Peng S J. Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential. Appl Math Lett, 2005, 15: 1094--1100
[14] Kang D S, Deng Y B. Existence of solutions for a singular critical elliptic equation. J Math Anal Appl, 2003, 284: 724--732
[15] Ruiz D, Willem M. Ellipltic problems with critical exponents and Hardy potentials. J Differential Equations, 2003, 190: 524--538
[16] Brezis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486--490
[17] Smets D. A concentration-compactness principle lemma with applications to singular eigenvalue problems. J Functional Analysis, 1999, 167: 463--480
[18] Kajikiya R. A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J Functional Analysis, 2005, 225: 352--370
[19] Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBME Regional Conf Ser in Math, No.65, Amer Math Soc, Providence RI, 1986
[20] Willem M. Minimax Theorems. Basel: Birkhauser, 1996 |