数学物理学报  2018, Vol. 38 Issue (4): 810-822   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
廖暑芃
沈建和
一类带有慢变参数的sine-Gordon方程的单脉冲异宿轨道
廖暑芃1, 沈建和1,2     
1. 福建师范大学数学与信息学院 福州 350117;
2. 福建省分析数学及其应用重点实验室 福州 350117
摘要:基于Fenichel的几何奇异摄动理论,结合Melnikov方法,该文研究一类带慢变参数的sine-Gordon方程单脉冲波前解的存在性.首先,基于几何奇异摄动理论进行快慢分离,获得层系统和退化系统及其动力学;接着,引入Melnikov函数度量慢流形的稳定和不稳定流形的横截相交性,获得Take-off和Touch-down曲线的解析式.控制Take-off和Touch-down曲线使之分别与两个慢流形上鞍点的不稳定和稳定流形横截相交,从而得到奇异异宿轨道的存在性.经摄动,在该奇异异宿轨附近可获得异宿于系统两个不同鞍点的异宿轨道的存在性,从而上述带慢变参数的sine-Gordon方程的单脉冲波前解的存在性可得.最后,考虑了一个具体的例子,验证理论结果的正确性.
关键词sine-Gordon方程    几何奇异摄动理论    Melnikov函数    单脉冲异宿轨道    
One-Pulse Travelling Front Solutions of a sine-Gordon Equation with Slowly Varying Parameters
Liao Shupeng1, Shen Jianhe1,2     
1. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350117;
2. FJKLMAA, Fuzhou 350117
Abstract: By combining Fenichel's geometric singular perturbation theory and Melnikov function method, this paper studies the existence of 1-pulse travelling front solutions of a sineGordon equation with slowly varying parameters. Firstly, we get the layer system and the reduced system respectively as well as their global dynamics via the technique of fast-slow separation, and then, we introduce the Melnikov function to determine the transversal intersections between the stable and unstable manifolds of the slow manifold, where we define the so-called Take-off and Touch-down curves. By controlling the Take-off and Touch-down curves to respectively intersect with the stable and unstable manifolds of the saddle points on the slow manifolds transversally, we get the singular heteroclinic orbits with transversality. Correspondingly we get the existence of heteroclinic orbits of the full singularly perturbed system by perturbing such singular heteroclinic orbits. Finally, we consider an example to verify the correctness of the obtained theoretical results.
Key words: sine-Gordon equation     Geometric singular perturbation theory     Melnikov function     1-Pulse heteroclinic orbit    
1 引言

动力系统同异宿轨道的存在性及其分支问题, 一直是非线性科学的研究中重要课题之一.一方面, 同异宿轨道的存在性及其摄动与混沌的产生密切相关; 另一方面, 关于一维反应-扩散系统非线性波问题的研究中, 同异宿轨的存在意味着行波解、波前解及冲击波解等局部化模式的形成.

sine-Gordon方程是一类重要的非线性波方程, 是超导体领域的基本模型之一.带有扰动项且空间变量为一维的sine-Gordon方程形式如下

$ \begin{equation} \label{{1.1}} u_{tt}-u_{xx}+D\sin u=\varepsilon (\gamma -\alpha u_{t}+\beta u_{xxt}), \end{equation} $ (1.1)

这里, $0<\varepsilon\ll1$, $x$是空间变量, $t$是时间变量, $\gamma$是外接电流, $\alpha u_{t}$代表准粒子的隧道效应, $\beta u_{xxt}$代表超导体中准粒子流, 参数$D$是Josephson隧道临界电流.显然, 方程(1.1)的最高阶导数前带有小参数, 因此方程(1.1)是奇异摄动方程.

$\varepsilon=0$时, 方程(1.1)退化为如下理想的sine-Gordon方程

$ \begin{equation} \label{eq2} u_{tt}-u_{xx}+D\sin u=0, \end{equation} $ (1.2)

其波前解的显式表达式如下

$ \begin{equation} \label{eq3} u_{0}(x, t)=4\arctan(e^{\xi}), \end{equation} $ (1.3)

其中$ \xi=\frac{x-ct+x_{0}}{\sqrt{1-c^{2}}} $为行波变量.基于退化方程(1.2)的动力学结构, Derks等[1]利用Fenichel的第一不变流形定理[2-3], 结合Melnikov函数方法[4], 研究了方程(1.1)位于慢流形上的异宿轨道(波前解)的存在性; 进一步地, Derks等利用Evans函数, 研究了上述(慢)波前解的稳定性.

后来, Derks等[5]进一步考虑如下具有异质性扰动的sine-Gordon方程

$ \begin{equation} \label{eq4} u_{tt}-u_{xx}+D\sin u=\varepsilon (\gamma -\alpha u_{t}), \end{equation} $ (1.4)

其中参数$D$具有跳跃型的异质性, 即

$ \begin{equation}D(x, L, d) = \left\{\begin{array}{l} d, ~~~|x|<L, \\ 1, ~~~|x|>L. \end{array}\right. \end{equation} $ (1.5)

区别于方程(1.1), 方程(1.4)为正则摄动系统, 但此时方程(1.4)带有如(1.5)式所定义的异质性参数$D$.利用动力系统方法, Derks等[1]研究了方程(1.4)多种波前解的存在性; 特别地, Derks等[1]指出:在异质性参数$D$的作用下, 方程(1.4)存在稳定的非单调波前解, 这是在同质介质中无法产生的, 是一种新的动力学现象.

实际上, 我们可以发现:关于摄动方程(1.1)和(1.4), 研究这两个方程的非线性波, 它们的行波系统所对应的退化方程均为如下具有哈密顿结构的单摆方程, 即

$ \ddot{q}+D\sin q=0, $

这里$\dot{q}=\frac{{\rm d}q}{{\rm d}t}$.在Derks等[1, 5]的研究中, 他们均假设参数$D$为常数或分段常数, 所得的波前解均只含单尺度, 即波前解没有脉冲行为(快慢行为).

Jones等[6]考虑$D$为慢变参数的情形, 即

$ \begin{equation} \label{eq6} \left\{ {\begin{array}{l} \ddot{q}+D(\tau_{1}, \tau_{2};\omega_{1}, \beta_{1}, \beta_{2})\sin q=0, \\ \dot{\tau_{1}}=\varepsilon, \\ \dot{\tau_{2}}=\varepsilon\sin(2\pi\tau_{2}), \end{array}} \right. \end{equation} $ (1.6)

其中$0<\varepsilon\ll1$, $q\in \mathbb{R}$, $ D(\tau_{1}, \tau_{2};\omega_{1}, \beta_{1}, \beta_{2})=1+\beta_{1}\sin(2\pi\omega_{1}\tau_{1})+\beta_{2}\sin(2\pi\tau_{2}), $这里$\omega_{1}>1$为无理数, $\beta_{1}, \beta_{2}>0$使得$0<\beta_{1}+\beta_{2}<1$成立, $(\tau_{1}, \tau_{2})\in T^2$, $T^2$为二维环面. Jones等[6]称系统(1.6)为具有准周期调制的单摆模型.利用交换引理, Jones等[6]研究了方程(1.6)异宿于慢流形上的稳定周期解的多脉冲异宿轨道的存在性.值得指出的是: Jones等[6]研究的系统(1.6)不具有平衡点, 因而获得的异宿轨道是异宿于周期轨道的脉冲异宿轨道.

基于Jones等[6]的准周期调制摆模型, 本文进一步考虑如下一类带有慢变参数的sine-Gordon方程

$ \begin{equation} \label{eq7} \left\{ {\begin{array}{l} \ddot{q}+D(\tau_{1}, \tau_{2};\omega_{1}, \beta_{1}, \beta_{2})\sin q=0, \\ \dot{\tau_{1}}=\varepsilon\tau_{2}, \\ \dot{\tau_{2}}=\varepsilon f(\tau_{1}), \\ \end{array}} \right. \end{equation} $ (1.7)

其中$f(\tau_{1})$是关于$\tau_{1}$的连续函数且至少存在一个$\tilde{\tau_{1}}$使得$f(\tilde{\tau_{1}})=0$.显然, 此时的系统(1.7)具有(无穷多)平衡点.考虑到周期性, 我们可以把相空间限制在一个周期之内.基于几何奇异摄动理论[2-3], 利用Doelman等[7]通过定义Take-off和Touch-down曲线来连接快慢轨道以获得脉冲同异宿轨道的存在性的办法, 本文研究系统(1.7)异宿于慢流形上两个不同的鞍点的单脉冲波前解的存在性.

实际上, 系统(1.7)等价于如下四维奇摄动系统

$ \begin{equation} \label{eq8} \left\{ {\begin{array}{l} \dot{q}=p, \\ \dot{p}=-D(\tau_{1}, \tau_{2};\omega_{1}, \beta_{1}, \beta_{2})\sin q, \\ \dot{\tau_{1}}=\varepsilon\tau_{2}, \\ \dot{\tau_{2}}=\varepsilon f(\tau_{1}).\\ \end{array}} \right. \end{equation} $ (1.8)

方程(1.8)称为快系统, 其中$p$$q$是快变量, 而$\tau_{1}$$\tau_{2}$是慢变量.

引入慢尺度, 可得如下对应的慢系统

$ \begin{equation} \label{eq9} \left\{ {\begin{array}{l} \varepsilon q'=p, \\ \varepsilon p'=-D(\tau_{1}, \tau_{2};\omega_{1}, \beta_{1}, \beta_{2})\sin q, \\ \tau_{1}'=\tau_{2}, \\ \tau_{2}'=f(\tau_{1}).\\ \end{array}} \right. \end{equation} $ (1.9)

显然, 当$\varepsilon\neq0$时, 系统(1.8)和(1.9)拓扑等价.

分别在(1.8)和(1.9)式中令$\varepsilon=0$, 可得层系统

$ \begin{equation} \label{eq10} \left\{ {\begin{array}{l} \dot{q}=p, \\ \dot{p}=-D(\tau_{1}, \tau_{2};\omega_{1}, \beta_{1}, \beta_{2})\sin q, \\ \dot{\tau_{1}}=0, \\ \dot{\tau_{2}}=0\\ \end{array}} \right. \end{equation} $ (1.10)

和退化系统

$ \begin{equation} \label{eq11} \left\{ {\begin{array}{l} p=0, \\ D(\tau_{1}, \tau_{2};\omega_{1}, \beta_{1}, \beta_{2})\sin q=0, \\ \tau_{1}'=\tau_{2}, \\ \tau_{2}'=f(\tau_{1}), \\ \end{array}} \right. \end{equation} $ (1.11)

其中$ M=\{(q, p, \tau_{1}, \tau_{2})|p=0, \sin q=0\} $称为临界流形, 它是四维空间中的二维流形.

显然, 层系统(1.10)和退化系统(1.11)都是流形或空间上的二维系统, 它们的动力学比较容易分析.基于层系统和退化系统的全局动力学, 通过引入Melnikov函数和Doelman等[7]关于控制层系统(1.10)的快轨道与临界流形上退化系统(1.11)鞍点的不稳定和不稳定流形横截相交的方法, 我们研究系统(1.8)异宿于两个不同鞍点的单脉冲异宿轨道的存在性问题.

本文结构安排如下:第一节是引言; 第二节分别分析层系统(1.10)和退化系统(1.11)的全局动力学, 同时建立快慢轨道的横截相交性, 获得奇异异宿轨道的存在性; 具有一定横截性的奇异异宿轨道经摄动保持, 从而系统(1.8)脉冲异宿轨道的存在性可得; 第三节是一个具体的例子, 验证理论结果的正确性; 最后是简单的结论.

2 脉冲异宿轨道的存在性
2.1 层系统的动力学

$\tau_{1}$$\tau_{2}$为参数, 那么层系统(1.10)可看作是四维空间中的二维系统

$ \begin{equation} \label{eq1} \left\{ {\begin{array}{l} \dot{q}=p, \\ \dot{p}=-D(\tau_{1}, \tau_{2};\omega_{1}, \beta_{1}, \beta_{2})\sin q. \\ \end{array}} \right. \end{equation} $ (2.1)

在四维空间中, 临界流形$M$上的每个点都是层系统的平衡点.考虑到层系统的周期性, 我们可将动力学限制在一个周期之内.此时, 二维临界流形

$ S_{0}^{1, 2}=\{(q, p, \tau_{1}^{0}, \tau_{2}^{0})|q=\pm\pi, p=0\} $

为法向双曲且其上的每个点(不考虑无穷远点)都为层系统的鞍点.

层系统(2.1)具有哈密顿结构, 其哈密顿函数为

$ H(q, p, \tau_{1}^{0}, \tau_{2}^{0})=\frac{p^{2}}{2}-D(\tau_{1}^{0}, \tau_{2}^{0};\omega_{1}, \beta_{1}, \beta_{2})\cos q-D(\tau_{1}^{0}, \tau_{2}^{0};\omega_{1}, \beta_{1}, \beta_{2}), $ (2.2)

其中$D(\tau_{1}^{0}, \tau_{2}^{0};\omega_{1}, \beta_{1}, \beta_{2})$为不依赖于$q$$p$的常数.对于任意的$(\tau_{1}^{0}, \tau_{2}^{0})\in E\subset R^{2}$, 其中$E$$\tau_{1}-\tau_{2}$平面上的有界集, 都有$H(\pm\pi, 0, \tau_{1}^{0}, \tau_{2}^{0})\equiv0$.

$ S_{0}^{1}\equiv(-\pi, 0)\times E, \quad S_{0}^{2}\equiv(\pi, 0)\times E. $ (2.3)

根据层系统(2.1)的哈密顿结构, 对于任意的点$(-\pi, 0, \tau_{1}^{0}, \tau_{2}^{0})\in S_{0}^{1}$, 总存在对应的点$(\pi, 0, \tau_{1}^{0}, $ $\tau_{2}^{0})\in S_{0}^{2}$, 使得上述两点之间存在异宿连接, 反之亦然.我们把这样的异宿轨道分别记为

$ \Gamma_{\tau_{1}^0, \tau_{2}^0}^{up}\equiv(q_{h}^{up}(t), p_{h}^{up}(t), \tau_{1}^0, \tau_{2}^0) $

$ \Gamma_{\tau_{1}^0, \tau_{2}^0}^{down}\equiv(q_{h}^{down}(t), p_{h}^{down}(t), \tau_{1}^0, \tau_{2}^0). $ (2.4)

上述所有的异宿轨道, 分别组成二维临界流形$S_{0}^{1}$$S_{0}^{2}$的三维稳定和不稳定流形, 分别记为$W^{s}(S_{0}^{1})$$W^{u}(S_{0}^{1})$以及$W^{s}(S_{0}^{2})$$W^{u}(S_{0}^{2})$, 其中$W^{u}(S_{0}^{1})$$W^{s}(S_{0}^{2})$$W^{s}(S_{0}^{1})$$W^{u}(S_{0}^{2})$重合形成四维空间中的三维异宿流形, 分别记为

$ \Xi^{up}\equiv W^{u}(S_{0}^{1})\bigcap W^{s}(S_{0}^{2})\equiv\bigcup\limits_{\tau_{1}^0, \tau_{2}^0\in T^{2}}\Gamma_{\tau_{1}^0, \tau_{2}^0}^{up} $

$ \begin{equation} \label{eq5} \Xi^{low}\equiv W^{u}(S_{0}^{2})\bigcap W^{s}(S_{0}^{1})\equiv \bigcup\limits_{\tau_{1}^0, \tau_{2}^0\in T^{2}} \Gamma_{\tau_{1}^0, \tau_{2}^0}^{down}, \end{equation} $ (2.5)

图 1.

图 1 系统(1.10)在四维空间中的动力学, 其中纵轴代表二维的$\tau_1$-$\tau_2$平面

根据Fenichel的不变流形定理[2-3]:当$0<\varepsilon\ll1$时, 由于$S_{0}^{1}$$S_{0}^{2}$均为法向双曲临界流形, 因此, 经摄动, 临界流形$S_{0}^{1}$$S_{0}^{2}$及其稳定流形$W^{s}(S_{0}^{1})$$W^{s}(S_{0}^{2})$以及不稳定流形$W^{u}(S_{0}^{1})$$W^{u}(S_{0}^{2})$均保持且分别微分同胚和$O(\varepsilon)$ -接近于慢流形$S_{\varepsilon}^{1}$$S_{\varepsilon}^{2}$及其稳定流形$W^{s}_{\varepsilon}(S_{\varepsilon}^{1})$$W^{s}_{\varepsilon}(S_{\varepsilon}^{2})$以及不稳定流形$W^{u}_{\varepsilon}(S_{\varepsilon}^{1})$$W^{u}(S_{\varepsilon}^{2})$.实际上, 由于$S_{0}^{1}$$S_{0}^{2}$关于整个奇异摄动系统(1.8)是不变的, 因此$S_{\varepsilon}^{1}\equiv S_{0}^{1}$$S_{\varepsilon}^{2}\equiv S_{0}^{2}$; 但摄动后的$W^{u}_{\varepsilon}(S_{\varepsilon}^{1})$$W^{s}_{\varepsilon}(S_{\varepsilon}^{2})$以及$W^{s}_{\varepsilon}(S_{\varepsilon}^{1})$$W^{u}_{\varepsilon}(S_{\varepsilon}^{2})$不再重合, 它们可能横截相交而形成异宿于慢流形的异宿轨道.在第2.3节, 我们将引入Melnikov函数, 研究$W^{u}_{\varepsilon}(S_{\varepsilon}^{1})(W^{s}_{\varepsilon}(S_{\varepsilon}^{1}))$$W^{s}_{\varepsilon}(S_{\varepsilon}^{2})(W^{u}_{\varepsilon}(S_{\varepsilon}^{2}))$的横截相交性, 同时控制由$W^{u}_{\varepsilon}(S_{\varepsilon}^{1})(W^{s}_{\varepsilon}(S_{\varepsilon}^{1}))$$W^{s}_{\varepsilon}(S_{\varepsilon}^{2})(W^{u}_{\varepsilon}(S_{\varepsilon}^{2}))$相交而成的快轨道与慢流形$S_{\varepsilon}^{1}$$S_{\varepsilon}^{2}$上鞍点的稳定和不稳定流形横截相交, 从而获得具有一定横截性的奇异异宿轨道, 即进一步可获得系统(1.8)异宿于两个不同鞍点的脉冲异宿轨道的存在性.

2.2 退化系统的动力学分析

在二维临界流形$S_{0}^{1}$$S_{0}^{2}$上, 退化系统的动力学为

$ \left\{ {\begin{array}{l} \tau_{1}'=\tau_{2}, \\ \tau_{2}'=f(\tau_{1}). \end{array}} \right. $ (2.6)

该系统为哈密尔顿系统, 其哈密尔顿函数为

$ H(\tau_{1}, \tau_{2})=\frac{(\tau_{2})^{2}}{2}+(-F(\tau_{1})), $ (2.7)

其中$F(\tau_{1})$$f(\tau_{1})$的原函数. $F(\tau_{1})$的拓扑结构会影响退化系统(2.6)的全局动力学.为确定, 我们假设

${\bf H}$: $F(\tau_{1})$充分光滑且存在$\tau_{11}$, $\tau_{12}$$\tau_{13}$使得$F'(\tau_{11})=F'(\tau_{12})=F'(\tau_{13})=0$; 同时满足

(1) $F(\tau_{11})=F(\tau_{13})$;

(2) 当$\tau_{1}\in( - \infty, \tau_{11} )\bigcup ( \tau_{12}, \tau_{13} )$时, $F'(\tau_{1})<0$; 当$\tau_{1}\in( \tau_{11}, \tau_{12} )\bigcup ( \tau_{13}, + \infty )$时, $F'(\tau_{1})>0$.

在上述的假设下, 曲线$\tau_{2}=-F(\tau_{1})$图 2(a)所示, 从而临界流形$S_{0}^{1}$$S_{0}^{2}$上的退化系统(2.6)具有如图 2(b)所示的全局动力学.

图 2 (a) 函数$\tau_{2}=-F(\tau_{1})$的图像; (b)二维临界流形上退化系统的全局动力学

图 2(b)可知:在二维的临界流形$S_{0}^{1}$$S_{0}^{2}$上, 退化系统(2.6)连接$(\tau_{11}, F(\tau_{11}))$$(\tau_{13}, F(\tau_{13}))$的异宿轨道可由如下水平集确定

$ \frac{(\tau_{2})^{2}}{2}-F(\tau_{1})=-F(\tau_{11})=-F(\tau_{13}). $

因此, 在临界流形$S_{0}^{1}$上, 鞍点$(\tau_{11}, F(\tau_{11}))$的稳定流形和鞍点$(\tau_{13}, F(\tau_{13}))$不稳定流形为

$ l_{11}^{s}=\{(\tau_{1}, \tau_{2})|\tau_{2}=-\sqrt{2(F(\tau_{1})-F(\tau_{11}))}\}; $ (2.8)

而鞍点$(\tau_{11}, F(\tau_{11}))$的不稳定流形和鞍点$(\tau_{13}, F(\tau_{13}))$的稳定流形为

$ l_{11}^{u}=\{(\tau_{1}, \tau_{2})|\tau_{2}=\sqrt{2(F(\tau_{1})-F(\tau_{13}))}\}. $ (2.9)

类似地, 在临界流形$S_{0}^{2}$上, 其鞍点的稳定和不稳定流形具有相同的显式表达式.

注2.1  根据不同的$F(\tau_{1})$, 临界流形上的退化系统(2.6)可能会有其他更复杂的动力学, 但讨论与上述类似, 此处不再做详细讨论.

2.3 Take-off和Touch-down曲线

上述两节已分别对快、慢动力学进行了分离.本小节将对层系统的快轨道和退化系统的慢轨道进行横截地连接和匹配.

首先, 利用Melnikov函数, 我们讨论由$W^{u}_{\varepsilon}(S_{\varepsilon}^{1})$$W^{s}_{\varepsilon}(S_{\varepsilon}^{2})$横截相交所构成的异宿于慢流形的异宿轨$\Gamma^{up}_{\varepsilon}$. $W^{u}_{\varepsilon}(S_{\varepsilon}^{2})$$W^{s}_{\varepsilon}(S_{\varepsilon}^{1})$的横截相交性所构成的异宿轨$\Gamma^{down}_{\varepsilon}$可类似讨论.

$0<\varepsilon\ll1$时, 经摄动, 此时层系统的$\tau_{1}$$\tau_{2}$已不再是常数, 而是被扰动成为慢变的状态变量.它们分别在常数$\tau_{1}^0$$\tau_{2}^0$(即对应$\varepsilon=0$的未扰情形)附近以$\tau_{2}^0$$f(\tau_{1}^0)$的慢变速率进行演化, 因此, 它们的演化规律可写为

$ \left\{ {\begin{array}{l} \tau_{1}=\tau_{1}^{0}+\varepsilon\tau_{2}^{0}t+\cdots, \\ \tau_{2}=\tau_{2}^{0}+\varepsilon f(\tau_{1}^{0})t+\cdots.\\ \end{array}} \right. $ (2.10)

进而, 将(2.10)式代入$\sin(2\pi\omega_{1}\tau_{1})$$\sin(2\pi\tau_{2})$并关于$\varepsilon$进行泰勒展开可得

$ \begin{array}{rl} \sin(2\pi\omega_{1}\tau_{1})&=&\sin(2\pi\omega_{1}(\tau_{1}^{0}+\varepsilon\tau_{2}^{0}t+\cdots)) \\ &=&\sin(2\pi\omega_{1}\tau_{1}^{0})+\varepsilon2\pi\omega_{1}\tau_{2}^{0}t\cos(2\pi\omega_{1}\tau_{1}^{0})+O(\varepsilon^{2}), \end{array} $ (2.11)
$ \begin{array}{rl} \sin(2\pi\tau_{2})&=&\sin(2\pi(\tau_{2}^{0}+\varepsilon f(\tau_{1}^{0})t+\cdots)) \\ &=&\sin(2\pi\tau_{2}^{0})+\varepsilon2\pi f(\tau_{1}^{0})t\cos(2\pi\tau_{2}^{0})+O(\varepsilon^{2}). \end{array} $ (2.12)

把(2.11)-(2.12)式代入快系统(1.8)的前面两个方程(也称为快子系统), 可得

$ \left\{ {\begin{array}{rl} \dot{q}=&p, \\ \dot{p}=&-D(\tau_{1}^{0}, \tau_{2}^{0};\omega_{1}, \beta_{1}, \beta_{2})\sin q +\varepsilon(2\pi\omega_{1}\tau_{2}^{0}t\cos(2\pi\omega_{1}\tau_{1}^{0})\\ &+2\pi f(\tau_{1}^{0})\cos(2\pi\tau_{2}^{0}))t\sin q+O(\varepsilon^{2}). \end{array}} \right. $

因此, 度量$W^{u}_{\varepsilon}(S_{\varepsilon}^{1})(W^{s}_{\varepsilon}(S_{\varepsilon}^{1}))$$W^{s}_{\varepsilon}(S_{\varepsilon}^{2})(W^{u}_{\varepsilon}(S_{\varepsilon}^{2}))$横截相交的Melnikov函数为

$ \begin{eqnarray} \label{eq13} &&M(\tau_{1}^{0}, \tau_{2}^{0};\omega_{1}, \beta_{1}, \beta_{2}) \\ & =&\int_{-\infty}^{+\infty}(H_{q}, H_{p})(g_{1}, g_{2})^{T}(q_{h}^{up}(t), p_{h}^{up}(t), \tau_{1}^{0}, \tau_{2}^{0}){\rm d}t \\ &=&-\int_{-\infty}^{+\infty}2\pi[\beta_{1}\omega_{1}\tau_{2}^{0}\cos(2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}f(\tau_{1}^{0})\cos(2\pi\tau_{2}^{0})]pt\sin q{\rm d}t \\ &=&-2\pi[\beta_{1}\omega_{1}\tau_{2}^{0}\cos(2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}f(\tau_{1}^{0})\cos(2\pi\tau_{2}^{0})]\int_{-\infty}^{+\infty}pt\sin q{\rm d}t, \end{eqnarray} $ (2.13)

其中, $q=q_{h}^{up}(t)(q_{h}^{down}(t))$, $p=p_{h}^{up}(t)(p_{h}^{down}(t))$, $g_i (i=1, 2)$代表上述系统的摄动项.

实际上, 经初等积分法, 可求得

$ q=2\arcsin(\tanh(\sqrt{D}t)) $

以及

$ p=\frac{{\rm d}q}{{\rm d}t}=2\sqrt{D}\sqrt{1-\tanh^{2}(\sqrt{D}t)}, $ (2.14)

其中

$ D=1+\beta_{1}\sin(2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}\sin(2\pi\tau_{2}^{0}). $

具体的计算过程可参看附录1.

将上述$p, q$的表达式代入(2.13)并计算可得

$ M=-\frac{8\pi}{\sqrt{D}}[\beta_{1}\omega_{1}\tau_{2}^{0}\cos(2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}f(\tau_{1}^{0})\cos(2\pi\tau_{2}^{0})]. $ (2.15)

因为$\frac{8\pi}{\sqrt{D}}\neq0$, 所以Melnikov函数为

$ M(\tau_{1}^{0}, \tau_{2}^{0}, \omega_{1}, \beta_{1}, \beta_{2})=\beta_{1}\omega_{1}\tau_{2}^{0}\cos(2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}f(\tau_{1}^{0})\cos(2\pi\tau_{2}^{0}). $ (2.16)

对于给定的参数$\omega_{1}$, $\beta_{1}$$\beta_{2}$, 几何上, $M=0$可认为是四维相空间中的三维流形.因为系统(1.8)的$\tau_1$$\tau_2$为慢变量且其演化规律不依赖于$p$$q$两个快变量, 所以对于上述Melnikov函数(2.16)的"简单零点"$(\tau_1^0, \tau_2^0)$, 在临界流形$S_0^1$$S_0^2$均有基点与之对应; 进一步地, 视所有简单零点$(\tau_1^0, \tau_2^0)$为参数, 那么$S_0^1$$S_0^2$上的基点随之变化并形成一维的曲线.根据Doelman等[7], 我们称上述一维的曲线为Take-off(Touch-down)曲线.若Take-off(Touch-down)曲线与$S_{0}^{1}(S_{0}^{2})$上鞍点的不稳定(稳定)流形横截相交, 此时, $S_{0}^{1}$$S_{0}^{2}$上的慢轨道(即鞍点的稳定和不稳定流形)与快轨道(即$\Gamma^{up}$$\Gamma^{down}$)可匹配并连接而成为所谓的奇异异宿轨道, 见图 3之加粗黑体的三段轨道; 其中, $S_{0}^{1}$$S_{0}^{2}$上的两段为慢轨道, $\Gamma^{up}$为快轨道.此时, 我们可以理解为:我们已在"所有的简单零点"中找到了能够与慢流形鞍点的稳定和不稳定流形横截相交(匹配连接)的点.

图 3 连接$\Gamma^{up}$$S_{0}^{1}$上的不稳定流形$l_{1}^{u}$$S_{0}^{2}$上的稳定流形$l_{2}^{s}$的奇异异宿轨道

实际上, 当$\varepsilon=0$时, 临界流形$S_{0}^{1}$$S_{0}^{2}$上的每个点均为层系统(1.10)的平衡点; 然而, 当$\varepsilon\neq0$时, $S_{0}^{1}$$S_{0}^{2}$上的四个鞍点会保存下来而成为系统(1.8)(也即系统(1.9))的平衡点.因而, 寻找系统(1.8)(也即系统(1.9))的异宿轨道, 即考虑上述四个平衡点之间的异宿连接问题.如果当$\varepsilon=0$时, Take-off曲线$T_o$(Touch-down曲线$T_d$)与$S_0^1$($S_0^2$)上鞍点的不稳定流形$l_1^u$($l_2^s$)横截相交, $W^{s}_{\varepsilon}(S_{\varepsilon}^{2})$$W^{u}_{\varepsilon}(S_{\varepsilon}^{1})$也是横截相交的(Melnikov函数存在简单零点保证), 那么, 根据Fenichel的第三不变流形定理[2-3]:当$\varepsilon\neq0$且充分小且自变量分别趋于$\pm\infty$时, 系统(1.8)的流分别与$S_{1, 2}^\varepsilon$上的慢流指数接近, 因此, 上述的横截相交性保证:当$\varepsilon=0$时所定义的奇异异宿轨道经过摄动能够保持而成为整个奇异摄动系统(1.8)的异宿轨道, 见图 3中与奇异异宿轨道充分接近的红褐色曲线.该异宿轨道含多尺度, 具有快慢特征, 故称为脉冲异宿轨道; 又因为该脉冲异宿轨道经过快场只有一次, 故称为单脉冲异宿轨道.类似地, 有多脉冲同异宿轨道的概念.

现考虑单脉冲异宿轨存在所需满足的条件.要使得$\Gamma^{up}$$S_{0}^{1}$上的不稳定流形$l_{1}^{u}$横截地相交, 即$\Gamma^{up}\bigcap_T l_{1}^{u}$, 须满足

$ \left\{ {\begin{array}{l} M=\beta_{1}\omega_{1}\tau_{2}^{0}\cos(2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}f(\tau_{1}^{0})\cos(2\pi\tau_{2}^{0})=0, \\ \tau_{2}^{0}=\sqrt{2(F(\tau_{1}^{0})-F(\tau_{13}))}. \end{array}} \right. $ (2.17)

上述方程组为以$\tau_1^0$$\tau_2^0$为未知数的非线性代数方程组.实际上, 该方程组等价于如下以$\tau_1^0$为未知数的代数方程

$ G(\tau_{1}^{0})=\beta_{1}\omega_{1}\sqrt{2(F(\tau_{1}^{0})-F(\tau_{13}))}\cos(2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}f(\tau_{1}^{0})\cos(2\pi\sqrt{2(F(\tau_{1}^{0})-F(\tau_{13}))})=0. $ (2.18)

因此, 若

$ G(\tau_{1}^{0})=0 $

关于$\tau_1^0$有非退化零点, 则Take-off(Touch-down)曲线与$S_{\varepsilon}^{1}(S_{\varepsilon}^{2})$的不稳定(稳定)流形$l_{1}^{u}(l_{2}^{s})$横截相交; 同时, $W^{s}_{\varepsilon}(S_{\varepsilon}^{2})$$W^{u}_{\varepsilon}(S_{\varepsilon}^{1})$也是横截相交的.从而, 具有一定横截性的奇异异宿轨道可得、也即系统(1.8)的脉冲异宿轨道的存在性可得.因此, 整理上述结果有

定理2.1  若$\omega_{1}>1$, $\beta_{1}, \beta_{2}>0$使得$0<\beta_{1}+\beta_{2}<1$, $F(\tau_{1})$满足假设$H$$G(\tau_{1}^0)$关于$\tau_1^0$有非退化零点, 那么当$\varepsilon>0$且充分小时, 奇异摄动系统(1.8)必存在与图 3所示的奇异异宿轨道Hausdorff接近的异宿轨道; 该异宿轨道经过快场一次, 因此为单脉冲异宿轨道.

类似的, 若下述的方程组存在非退化根

$ \left\{ {\begin{array}{l} M=\beta_{1}\omega_{1}\tau_{2}^{0}\cos(2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}f(\tau_{1}^{0})\cos(2\pi\tau_{2}^{0})=0, \\ \tau_{2}^{0}=-\sqrt{2(F(\tau_{1}^{0})-F(\tau_{11}))}, \\ \end{array}} \right. $ (2.19)

$ \tilde{G}(\tau_{1}^{0})=-\beta_{1}\omega_{1}\sqrt{2(F(\tau_{1}^{0})-F(\tau_{11}))}\cos(2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}f(\tau_{1}^{0})\cos(2\pi\sqrt{2(F(\tau_{1}^{0})-F(\tau_{11}))})=0 $ (2.20)

关于$\tau_1^0$存在非退化零点, 则有如下结论.

定理2.2  若$\omega_{1}>1$, $\beta_{1}, \beta_{2}>0$使得$0<\beta_{1}+\beta_{2}<1$, $F(\tau_{1})$满足假设$H$$\tilde{G}(\tau_{1}^0)$关于$\tau_1^0$有非退化零点, 那么当$\varepsilon>0$且充分小时, 奇异摄动系统(1.8)必存在与图 4所示的奇异异宿轨道Hausdorff接近的单脉冲异宿轨.

图 4 连接$\Gamma^{down}$$S_{0}^{1}$上的稳定流形$l_{1}^{s}$$S_{0}^{2}$上的不稳定流形$l_{2}^{u}$的奇异异宿轨道

注2.2  实际上, 本文的几何构造方法同样适用于只有一个临界流形的"同宿结构"问题.若系统只有一个临界流形且流形上的具有鞍点和连接鞍点自身的同宿流形, 那么, 同样可以定义Take-off和Touch-down曲线并使之与鞍点的稳定和不稳定流形横截相交而得到类似上述的"奇异同宿轨道".思想方法与上述类似, 此处不再做详细讨论.

注2.3  若系统(1.8)的慢变状态变量$\tau_{1}$$\tau_{2}$与快变量$q$$p$相关, 那么类似于Doelman等[8]对耦合Ginzburg-Landau系统的研究, 此时可用Doelman等[8]的方法计算获得Take-off和Touch-down曲线的解析式.因而, 一定条件下可以处理$\tau_{1}$$\tau_{2}$与快变量$q$$p$相关的情形.具体的方法参见文献[8].我们将在后续的工作中考虑上述课题.

3 具体例子

基于第二节的理论框架, 本节考虑如下具体例子

$ \left\{ {\begin{array}{l} \ddot{q}+D(\tau_{1}, \tau_{2};\omega_{1}, \beta_{1}, \beta_{2})\sin q=0, \\ \dot{\tau_{1}}=\varepsilon\tau_{2}, \\ \dot{\tau_{2}}=\varepsilon(\tau_{1}^{3}-\tau_{1}).\\ \end{array}} \right. $ (3.1)

此时

$ f(\tau_{1})=\tau_{1}^{3}-\tau_{1}, \quad F(\tau_{1})=\frac{\tau_{1}^{4}}{4}-\frac{\tau_{1}^{2}}{2}, $
$ S_0^1=S_{\varepsilon}^{1}=\{(q, p, \tau_1, \tau_2)| q=0, p=-\pi, (\tau_1, \tau_2)\in E\} $

以及

$ S_0^2=S_{\varepsilon}^{2}=\{(q, p, \tau_1, \tau_2)| q=0, p=\pi, (\tau_1, \tau_2)\in E\}. $

在一个周期之内, 系统(3.1)有$A_{1}(\pm\pi, 0, -1, 0)$, $A_{2}(\pm\pi, 0, 0, 0)$$A_{3}(\pm\pi, 0, 1, 0)$三个平衡点, 其中$A_{1}$$A_{3}$为鞍点.慢流形$S_{\varepsilon}^{1}$上鞍点$(-\pi, 0, -1, 0)$的不稳定流形和鞍点$(-\pi, 0, 1, 0)$的稳定流形为

$ l_{1}^{s}=\bigg\{(\tau_{1}, \tau_{2})|\tau_{2}=-\sqrt{\frac{1}{2}\tau_{1}^{4}-\tau_{1}^{2}+\frac{1}{2}}\;\bigg\}. $ (3.2)

而慢流形$S_{\varepsilon}^{1}$上鞍点$(-\pi, 0, -1, 0)$的稳定流形和鞍点$(-\pi, 0, 1, 0)$的不稳定流形为

$ l_{1}^{u}=\bigg\{(\tau_{1}, \tau_{2})|\tau_{2}=\sqrt{\frac{1}{2}\tau_{1}^{4}-\tau_{1}^{2}+\frac{1}{2}}\;\bigg\}. $ (3.3)

慢流形$S_{\varepsilon}^{2}$上鞍点的稳定和不稳定流形有类似的表达式.

对于系统(3.1), 此时的Melnikov函数为

$ M=\beta_{1}\omega_{1}\tau_{2}^{0}\cos(2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}((\tau_{1}^{0})^{3}-\tau_{1}^{0})\cos(2\pi\tau_{2}^{0}). $ (3.4)

要使得$\Gamma^{up}$横截地连接$S_{\varepsilon}^{1}$上鞍点$(-\pi, 0, -1, 0)$的不稳定流形$l_{1}^{u}$$S_{\varepsilon}^{2}$上鞍点$(\pi, 0, 1, 0)$的稳定流形$l_{2}^{s}$, 需满足

$ \left\{ {\begin{array}{l} M=\beta_{1}\omega_{1}\tau_{2}^{0}\cos(2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}((\tau_{1}^{0})^{3}-\tau_{1}^{0})\cos(2\pi\tau_{2}^{0}), \\ \tau_{2}=\sqrt{\frac{1}{2}\tau_{1}^{4}-\tau_{1}^{2}+\frac{1}{2}}. \end{array}} \right. $ (3.5)

$ \bar{G}(\tau_{1}^{0})=\beta_{1}\omega_{1}\sqrt{\frac{1}{2}\tau_{1}^{4} -\tau_{1}^{2}+\frac{1}{2}}\cos (2\pi\omega_{1}\tau_{1}^{0})+\beta_{2}((\tau_{1}^{0})^{3}-\tau_{1}^{0}) \cos\bigg(2\pi\sqrt{\frac{1}{2}\tau_{1}^{4}-\tau_{1}^{2}+\frac{1}{2}}\;\bigg)=0. $ (3.6)

因此有

定理3.1  若$\omega_{1}>1$, $\beta_{1}, \beta_{2}>0$使得$0<\beta_{1}+\beta_{2}<1$$\bar{G}(\tau_{1}^{0})$有非退化零点, 那么当$\varepsilon>0$充分小时, 奇异摄动系统(3.1)必存在单脉冲异宿轨.

实际上, 对于$\bar{G}(\tau_{1}^{0})=0$, 有如下结论.

(1) 当$\tau_{1}^{0}=\pm1$时, 有$\bar{G}(-1)=\bar{G}(1)=0$.但因为$(-\pi, 0, -1, 0, )$$(\pi, 0, 1, 0, )$是鞍点, 属临界情况, 经摄动后的横截相交性不易讨论, 故本文先不讨论;

(2) 不妨取定参数$\omega_{1}=\sqrt{2}$, $\beta_{1}=\frac{1}{2}$, $\beta_{2}=\frac{1}{3}$, 则此时

$ \begin{eqnarray*} \bar{G}(\tau_{1}^{0})&=&\frac{\sqrt{2}}{2}\sqrt{\frac{1}{2}(\tau_{1}^{0})^4-(\tau_{1}^{0})^2+ \frac{1}{2}}\cos(2\sqrt{2}\pi\tau_{1}^{0})\\ &&+ \frac{1}{3}((\tau_{1}^{0})^{3}-\tau_{1}^{0})\cos \bigg(2\pi\sqrt{\frac{1}{2}(\tau_{1}^{0})^4-(\tau_{1}^{0})^2+\frac{1}{2}}\;\bigg)=0. \end{eqnarray*} $

不难验证:当$\tau_{1}^{0}=0$时, 有

$ \bar{G}(0)=\frac{1}{2}>0; $

而当$\tau_{1}^{0}=\frac{1}{5}$时, 有

$ \bar{G}(\frac{1}{5})=\frac{14}{5}\cos(\frac{2\sqrt{2}}{5}\pi)-\frac{8}{125}\cos(\frac{28\sqrt{2}}{5}\pi)<0. $

故由零点存在定理可得:至少存在一个$\tau_{1}^{0}\in(0, \frac{1}{5})$满足$\bar{G}(\tau_{1}^{0})=0$, 即$\bar{G}(\tau_{1}^{0})=0$可存在零点.利用Matlab软件, 我们画出函数$\bar{G}(\tau_{1}^{0})$在区间$(-1, 1)$上的函数图像, 如图 5所示.

图 5 $\bar{G}(\tau_{1}^{0})$在区间$(-1, 1)$上的函数图像

图 5可知:在区间$(-1, 1)$上, $\bar{G}(\tau_{1}^{0})=0$在区间$(-1, 1)$上有多个零点且非退化.在此情形下, 快慢轨道的匹配连接存在多种情况, 从而可能存在多条不同的单脉冲异宿轨, 它们Hausdorff接近于由$\Gamma^{up}$$\Gamma^{down}$$S_{\varepsilon}^{1}$$S_{\varepsilon}^{2}$上的稳定、不稳定流形适当地横截连接而成的奇异异宿轨道.当$t\rightarrow\pm\infty$时, 这些单脉冲异宿轨渐近地异宿于$S_{\varepsilon}^{1}$$S_{\varepsilon}^{2}$上的两个不同的鞍点.这里不展开讨论.

4 结论

本文利用几何奇异摄动理论, 结合Melnikov函数方法, 研究一类带有慢变参数的sine-Gordon方程有关脉冲异宿轨道的存在性问题.通过快慢分离, 并横截地匹配、连接层系统的快轨道和慢流形上慢轨道获得奇异异宿轨道; 经摄动, 在奇异异宿轨道附近获得整个四维奇异摄动系统的单脉冲异宿轨道.我们研究发现:一定参数条件下, sine-Gordon方程可存在异宿于不同鞍点的脉冲异宿轨道.

附录1  异宿轨道的显式表达式的初等推导

$\ddot{q}=-D\sin q$可得

$ \frac{\dot{q}^{2}}{2}=D(1+\cos q), $

$ \frac{{\rm d}q}{\sqrt{2D(1+\cos q)}}=\frac{{\rm d}q}{2\sqrt{D}\cos \frac{q}{2}}={\rm d}t, $

$x=\sin \frac{q}{2}$, 则${\rm d}x=\frac{1}{2}\cos \frac{q}{2}{\rm d}q$, 故

$ \frac{\frac{2}{\cos \frac{q}{2}}{\rm d}x}{2\sqrt{D}\cos \frac{q}{2}}=\frac{{\rm d}x}{\sqrt{D}\cos^{2}(\frac{q}{2})}=\frac{{\rm d}x}{\sqrt{D}(1-x^{2})}={\rm d}t, $

解得

$ \frac{1+x}{1-x}=c\cdot e^{2\sqrt{D}t}, $

在初始点$q=0,t=0$处有$x=\sin \frac{q}{2}=0$, 故有$c=1$, 即

$ \frac{1+x}{1-x}=e^{2\sqrt{D}t}, $

$ q=2\arcsin(\tanh(\sqrt{D}t)). $

$ \dot{q}=p, $

$ p=2\sqrt{D}\sqrt{1-\tanh^{2}(\sqrt{D}t)}. $

附录2  Melnikov函数的计算

因为

$ \sin\frac{q}{2}=x=\frac{e^{2\sqrt{D}t}-1}{e^{2\sqrt{D}t}+1}=1-\frac{2}{e^{2\sqrt{D}t}+1}, $

解得

$ t=\frac{1}{2\sqrt{D}}\ln\frac{1+\sin\frac{q}{2}}{1-\sin\frac{q}{2}}, $

$ \begin{eqnarray*} \int_{-\infty}^{+\infty}pt\sin q{\rm d}t&=&\int_{-\pi}^{+\pi}t\sin q{\rm d}q \\ &=&\frac{1}{2\sqrt{D}}\int_{-\pi}^{+\pi}\sin q\ln\frac{1+\sin\frac{q}{2}}{1-\sin\frac{q}{2}}{\rm d}q \\ &=&\frac{2}{\sqrt{D}}\int_{-1}^{1}\sin\frac{q}{2}\ln\frac{1+\sin\frac{q}{2}}{1-\sin\frac{q}{2}}d\sin\frac{q}{2}. \end{eqnarray*} $

$x=\sin\frac{q}{2}$, 则有

$ \begin{eqnarray*} \int_{-\infty}^{+\infty}pt\sin q{\rm d}t&=&\frac{2}{\sqrt{D}}\int_{-1}^{1}x\ln\frac{1+x}{1-x}{\rm d}x \\ &=&\frac{2}{\sqrt{D}} \bigg[\int_{-1}^{1}x\ln(1+x){\rm d}x-\int_{-1}^{1}x\ln(1-x){\rm d}x\bigg] \\ &=&\frac{2}{\sqrt{D}}[1-(-1)]=\frac{4}{\sqrt{D}}>0. \end{eqnarray*} $

其中

$ \begin{eqnarray*} \int_{-1}^{1}x\ln(1+x){\rm d}x&=&\frac{1}{2}\int_{-1}^{1}\ln(1+x){\rm d}x^{2} \\ &=&\frac{1}{2}x^{2}\ln(1+x)|_{-1}^{1}-\frac{1}{2}\int_{-1}^{1}\frac{x^{2}}{1+x}{\rm d}x=1. \end{eqnarray*} $

类似的

$ \begin{eqnarray*} \int_{-1}^{1}x\ln(1-x){\rm d}x&=&\frac{1}{2}\int_{-1}^{1}\ln(1-x){\rm d}x^{2} \\ &=&\frac{1}{2}x^{2}\ln(1-x)|_{-1}^{1}-\frac{1}{2}\int_{-1}^{1}\frac{-x^{2}}{1-x}{\rm d}x=-1. \end{eqnarray*} $
参考文献
[1] Derks G, Doelman A, Van Gils S, Visser T. Travelling waves in a singularly perturbed sine-Gordon equation. Physica D, 2003, 180: 40–70. DOI:10.1016/S0167-2789(03)00050-2
[2] Fenichel N. Geometric singular perturbation theory for ordinary differential equations. J Differential Equations, 1979, 31(1): 53–98. DOI:10.1016/0022-0396(79)90152-9
[3] Jones C. Geometric Singular Perturbation Theory//Johnson R. Dynamical Systems. Berlin: SpringerVerlag, 1995: 44-118
[4] Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York: Springer-Verlag, 1994
[5] Derks G, Doelman A, Knight C, Susanto H. Pinned fluxons in a Josephson junction with a finite-length inhomogeneity. Euro J Appl Math, 2012, 23: 201–244. DOI:10.1017/S0956792511000301
[6] Jones C, Kaper T J, Kopell N. Tracking invariant manifolds up to exponentially small errors. SIAM, J Math Anal, 1996, 27(2): 558–577. DOI:10.1137/S003614109325966X
[7] Doelman A, Gardner R A, Kaper T J. Large stable pulse solutions in reaction-diffusion equations. Indiana Univ Math J, 2001, 50: 443–507. DOI:10.1512/iumj.2001.50.1873
[8] Doelman A, Hek G, Valkhoff N. Stabilization by slow diffusion in a real Ginzburg-Landau system. J Nonlinear Sci, 2004, 14: 237–278. DOI:10.1007/BF02666022