数学物理学报  2018, Vol. 38 Issue (4): 679-686   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
王丽
超音速流越过弯曲坡面的反问题
王丽     
上海电机学院文理教学部 上海 201306
摘要:该文研究由TSD方程刻画的超音速流越过弯曲坡面的反问题.该文将确定一个弯曲的坡面,使得超音速流越过它时产生的激波在给定的位置.这类问题在航空工业领域应用广泛.在合适的假设条件下,运用黎曼不变量和Lax变换,通过解一个广义柯西问题,该文得到上述问题解的整体存在性及唯一性.
关键词TSD方程    黎曼不变量    Lax变换    广义柯西问题    
The Inverse Problem for the Supersonic Plane Flow Past a Curved Wedge
Wang Li     
Department of Mathematics and Physics, Shanghai Dianji University, Shanghai 201306
Abstract: The inverse problem for the supersonic plane flow described by TSD equation past a curved wedge is considered. For a uniform supersonic oncoming flow, under the hypothesis that the position of the shock is given, we will globally determine the curved wedge. This kind of problem plays an important role in the aviation industry. Under suitable assumptions, with the help of Riemann invariants and Lax transform, by solving a generalized Cauchy problem, the global existence and uniqueness for the above mentioned problem is established.
Key words: TSD equation     Riemann invariants     Lax transform     Generalized Cauchy problem    
1 引言

该文研究超音速流越过弯曲坡面的反问题, 即我们要确定一个弯曲的坡面, 使得当超音速流越过它时产生的激波在事先给定的位置.关于超音速流越过弯曲坡面的直接问题, 读者可以参考文献[1-7].李大潜和王利彬研究了反活塞问题解的整体存在性及唯一性[8-9].在参考文献[10]中, 王利彬研究了定常等熵无旋流越过弯曲坡面的反问题, 得到了该问题解的整体存在性及唯一性.该文将研究由TSD方程刻画的超音速流越过弯曲坡面的反问题.解决此类激波控制问题的关键是我们需要确定一个弯曲的坡面, 使得当TSD超音速流越过它时产生的激波在事先给定的位置.这类反问题在航空工业领域应用广泛.

众所周知, TSD方程为[11-12]

$ \begin{equation}\label{tsd} \left\{ \begin{array}{c} u u_x+v_y=0, \\ v_x-u_y=0, \\ \end{array} \right. \end{equation} $ (1.1)

其中$u$$v$是流体速度的两个分量.当$u<0$时, 方程组(1.1)有两个互异的实特征根

$ \begin{equation}\label{tsdtz} \lambda_1=-\sqrt{-\frac{1}{u}}, ~~~\lambda_2=\sqrt{-\frac{1}{u}}. \end{equation} $ (1.2)

我们首先考虑速度为$(u_0, v_0)$的超音速流越过直坡面的情形.若给定直激波$S:y=(\tan\beta_0)x$ (这里$\beta_0$满足$\beta_0<\beta_{ext}$), 我们可以确定一个通过原点的直边界$y=(\tan\theta_0)x $ $(x\geq0)$[1]和流体越过激波后的超音速解$(u, v)=(u_1, v_1)$.这里$(u, v)=(u_1, v_1)$满足如下的边界条件[12].

在直激波边界上, 由R-H条件知

$ \begin{equation}\label{tsd2} v =v_{0}-\sqrt{-\frac{1}{2}(u-u_{0})^2(u+u_{0})}, ~~~~ 0>u>u_{0} \end{equation} $ (1.3)

$ \begin{equation}\label{tsd3} \frac{{\rm d}y}{{\rm d}x}=\frac{u-u_0}{v_0-v}, \end{equation} $ (1.4)

同时, 在直坡面边界$y=(\tan\theta_0)x$上有

$ \begin{equation}\label{tsd1} v=(\tan\theta_0)u, \end{equation} $ (1.5)

其中$\theta_0$不超过坡面最大角$\theta_{ext}$, $\beta_{ext}$表示坡面角为$\theta_{ext}$时的激波角[1].

接下来我们考虑超音速流越过弯曲坡面的情形.令$y=g(x)\in C^2 (x\geq0)$($g(0)=0$$g'(0)=\tan\beta_0$)为我们事先给定的弯曲激波的位置, 当$\beta_0<\beta_{ext}$时, 我们可以确定一个弯曲坡面$y=f(x)\in C^2 (x\geq0)$($f(0)=0$$f'(0)=\tan\theta_0$), 使得速度为$(u_0, v_0)$的超音速流越过它时产生的激波在事先给定的位置.越过激波后流体的状态可以由(1.3)-(1.4)式确定且在弯曲坡面边界上满足

$ \begin{equation}\label{wqbj} f'(x)=\frac{v}{u}. \end{equation} $ (1.6)

在本文中, 我们将证明如下定理.

定理1.1  假设$\beta_0<\beta_{ext}$, 存在合适的小量$\epsilon>0$, 使得若$g(x)\in C^2(g(0)=0, g'(0)=\tan\beta_0)$满足

$ \begin{equation}\label{thm1} |g'(x)-g'(0)|\leq \epsilon, ~~~\forall x\geq0 \end{equation} $ (1.7)

$ \begin{equation}\label{thm2} |g''(x)|\leq \frac{\epsilon}{1+x}, ~~~\forall x\geq0, \end{equation} $ (1.8)

则在角状区域

$ \begin{equation}\label{thm3} \Omega=\{(x, y)|f(x)\leq y\leq g(x), x\geq0\} \end{equation} $ (1.9)

中我们可以唯一地确定一个弯曲的坡面$y=f(x)\in C^2$, 使得流体越过它时产生的激波正好是$y=g(x)$.这里$f(0)=0, f'(0)=\tan\theta_0$满足

$ \begin{equation}\label{thm6} |f'(x)-f'(0)|\leq K_1 \epsilon, ~~~\forall x\geq0 \end{equation} $ (1.10)

$ \begin{equation}\label{thm7} |f''(x)|\leq \frac{K_2 \epsilon}{1+x}, ~~~\forall x\geq 0, \end{equation} $ (1.11)

其中$K_1$$K_2$是不依赖于$\epsilon$的正常数.

注1.1  定理1.1相应的直接问题是:给定弯曲坡面$y=f(x)\in C^2 (x\geq0)(f(0)=0, $ $f'(0)=\tan\theta_0)$, 如果$\theta_0<\theta_{ext}$, 当速度为$(u_0, v_0)$的超音速流越过它时会产生激波$y=g(x)(g(0)=0)$.我们可以通过解区域$\Omega$上方程组$(1.1)$的自由边值问题得到上述直接问题的解[1, 13], 其中在$y=f(x)$上满足边界条件$(1.6)$, 在$y=g(x)$上满足R-H条件$(1.3)$$(1.4)$.

$(x, y)$平面上原点邻域内, 上述自由边值问题存在唯一的局部超音速解$(u, v)=(u(x, y), $ $v(x, y))\in C^1$, 且在原点处有$(u, v)=(u_1, v_1)$且激波$y=g(x)\in C^2$的方向为[4, 13]

$ \begin{equation}\label{fbp1} g'(0)=\tan\beta_0=\frac{u_1-u_0}{v_0-v_1}. \end{equation} $ (1.12)
2 定理1.1的证明

引入黎曼不变量[6]

$ \begin{equation}\label{Riemann} \left\{ \begin{array}{l} r=v+\frac{2}{3}(-u)^{\frac{3}{2}}, \\[3mm] s=v-\frac{2}{3}(-u)^{\frac{3}{2}}, \end{array} \right. \end{equation} $ (2.1)

方程组(1.1)可以等价为区域$\Omega$上的方程组

$ \begin{equation}\label{Riemann1} \left\{ \begin{array}{l} \frac{\partial r}{\partial x}+\bar{\lambda_1}(r, s)\frac{\partial r}{\partial y}=0, \\[3mm] \frac{\partial s}{\partial x}+\bar{\lambda_2}(r, s)\frac{\partial s}{\partial y}=0, \\ \end{array} \right. \end{equation} $ (2.2)

其中

$ \begin{equation}\label{Riemann5} \bar{\lambda_1}(r, s)=- \Big[\frac{3}{4}(r-s)\Big]^{-\frac{1}{3}}, ~~\bar{\lambda_2}(r, s)= \Big[\frac{3}{4}(r-s)\Big]^{-\frac{1}{3}}. \end{equation} $ (2.3)

在定理1.1的假设下, 由(1.3)-(1.4)式可知, 在$y=g(x)$上有

$ \begin{equation}\label{gtj} \left\{ \begin{array}{l} u=u(x)=\frac{-2}{g'(x)^2}-u_0, \\[3mm] v=v(x)=\frac{2}{g'(x)^3}+\frac{2u_0}{g'(x)}+v_0. \\ \end{array} \right. \end{equation} $ (2.4)

由(2.1)式知, 在$y=g(x)$上, $r=r(x)$$s=s(x)$($r(0)=r_0$, $s(0)=s_0$)满足

$ \begin{equation}\label{rs1} |r(x)-r_0|, ~|s(x)-s_0|\leq K_3 \epsilon \end{equation} $ (2.5)

$ \begin{equation}\label{rs2} |r'(x)|, ~|s'(x)|\leq \frac{K_4 \epsilon}{1+x}, \end{equation} $ (2.6)

其中$(r_0, s_0)$是方程组$(2.1)$相应于$(u_1, v_1)$的解, $K_3$$K_4$是不依赖于$\epsilon$的正常数.为了证明定理1.1, 我们需要在区域$\Omega$上解方程组(2.2)的广义柯西问题

$ \begin{equation}\label{gkc1} \left\{ \begin{array}{l} \frac{\partial r}{\partial x}+\bar{\lambda_1}(r, s)\frac{\partial r}{\partial y}=0, \\[3mm] \frac{\partial s}{\partial x}+\bar{\lambda_2}(r, s)\frac{\partial s}{\partial y}=0, \\[2mm] y=g(x):~r=r(x), ~s=s(x), ~~\forall x\geq 0. \end{array} \right. \end{equation} $ (2.7)

由(1.6), (1.12), (2.1)和(2.3)式可知

$ \begin{equation}\label{wtz1} \bar{\lambda_1}(r_0, s_0)=\lambda_1(u_1, v_1)=-\sqrt{-\frac{1}{u_1}}, \end{equation} $ (2.8)
$ \begin{equation}\label{wtz2} f'(0)=\frac{v_1}{u_1}, \end{equation} $ (2.9)
$ \begin{equation}\label{wtz3} g'(0)=-\frac{u_1-u_0}{v_1-v_0}=-\frac{u_1-u_0}{-\sqrt{-\frac{1}{2}(u_1-u_0)^2(u_1+u_0)}}=\sqrt{\frac{2}{-(u_1+u_0)}}, \end{equation} $ (2.10)
$ \begin{equation}\label{wtz4} \bar{\lambda_2}(r_0, s_0)=\lambda_2(u_1, v_1)=\sqrt{-\frac{1}{u_1}}. \end{equation} $ (2.11)

利用(2.8)-(2.11)式和$u_1>u_0$, 我们得到

$ \begin{equation}\label{wtz} \bar{\lambda_1}(r_0, s_0)<f'(0)<g'(0)<\bar{\lambda_2}(r_0, s_0), \end{equation} $ (2.12)

上式表明无特征线从原点处进入区域$\Omega$.由(2.12)式可知, 广义柯西问题(2.7)有唯一的局部$C^1$$(r, s)=(r(x, y), s(x, y))$[13].在本文中, 我们暂时假定在解$(r, s)=(r(x, y), s(x, y))$的任一给定的存在区间上有

$ \begin{equation}\label{duoyu} |r(x, y)-r_0|, ~|s(x, y)-s_0|\leq \delta, \end{equation} $ (2.13)

其中$\delta>0$是一个合适的小量.在证明的结尾处, 我们将说明上述假设的合理性.

$ \begin{equation}\label{bjbh} \left\{ \begin{array}{l} \tilde{y}=g(x)-y, \\ \tilde{x}=x. \\ \end{array} \right. \end{equation} $ (2.14)

由(2.12), (1.9)和(2.13)式知, 区域$\Omega$上的广义柯西问题(2.7)可变为区域$\tilde{\Omega}=\{(\tilde{x}, \tilde{y})|\tilde{y}\geq 0, $ $ \tilde{x}\geq h(\tilde{y})\}$上的柯西问题

$ \begin{equation}\label{gkc2} \left\{ \begin{array}{l} \frac{\partial \tilde{r}}{\partial \tilde{y}}+\tilde{\lambda_1}(r, s)\frac{\partial \tilde{r}}{\partial \tilde{x}}=0, \\[3mm] \frac{\partial \tilde{s}}{\partial \tilde{y}}+\tilde{\lambda_2}(r, s)\frac{\partial \tilde{s}}{\partial \tilde{x}}=0, \\[2mm] \tilde{y}=0:~(\tilde{r}, \tilde{s})=(r(\tilde{x}), s(\tilde{x})), ~~\forall \tilde{x}\geq 0, \end{array} \right. \end{equation} $ (2.15)

其中

$ \begin{equation}\label{b1} (\tilde{r}(\tilde{x}, \tilde{y}), \tilde{s}(\tilde{x}, \tilde{y}))=(r(\tilde{x}, g(\tilde{x})-\tilde{y}), s(\tilde{x}, g(\tilde{x})-\tilde{y})), \end{equation} $ (2.16)
$ \begin{equation}\label{b2} \tilde{\lambda_1}(\tilde{x}, \tilde{r}, \tilde{s})=\frac{1}{g'(\tilde{x})-\bar{\lambda_1}(\tilde{r}, \tilde{s})}, \end{equation} $ (2.17)
$ \begin{equation}\label{b3} \tilde{\lambda_2}(\tilde{x}, \tilde{r}, \tilde{s})=\frac{1}{g'(\tilde{x})-\bar{\lambda_2}(\tilde{r}, \tilde{s})}, \end{equation} $ (2.18)

$\tilde{x}\geq h(\tilde{y})\in C^2$ ($h(0)=0$)由

$ \begin{equation}\label{b4} \tilde{y}=g(\tilde{x})-f(\tilde{x}) \end{equation} $ (2.19)

决定, 其中$y=f(x)$是弯曲坡面的方程.由$(u, v)$平面的激波极线我们可以得到$f'(0)=\tan\theta_0$.在文章的最后我们将整体地描述$y=f(x)$.

利用(1.7), (2.12)和(2.13)式, 我们得到

$ \begin{equation}\label{b5} \tilde{\lambda_2}(\tilde{x}, \tilde{r}, \tilde{s})<\tilde{\lambda_1}(\tilde{x}, \tilde{r}, \tilde{s})<\frac{1}{g'(\tilde{x})-f'(\tilde{x})}, \end{equation} $ (2.20)

由(2.5)-(2.6)式可得

$ \begin{equation}\label{rs11} |r(\tilde{x})-r_0|, ~|s(\tilde{x})-s_0|\leq K_3 \epsilon, ~~~\forall \tilde{x}\geq 0 \end{equation} $ (2.21)

$ \begin{equation}\label{rs21} |r'(\tilde{x})|, ~|s'(\tilde{x})|\leq \frac{K_4 \epsilon}{1+\tilde{x}}, ~~~\forall \tilde{x}\geq 0. \end{equation} $ (2.22)

显然, 在区域$\tilde{\Omega}(\delta_0)=\{(\tilde{x}, \tilde{y})|0\leq \tilde{y}\leq\delta_0, \tilde{x}\geq h(\tilde{y}) \}$上, (2.15)式有唯一的$C^1$$(\tilde{r}, \tilde{s})=(\tilde{r}(\tilde{x}, \tilde{y}), \tilde{s}(\tilde{x}, \tilde{y})) =(r(\tilde{x}, g(\tilde{x})-\tilde{y}), s(\tilde{x}, g(\tilde{x})-\tilde{y}))$, 其中$\delta_0>0$是一个合适的小量[13].为了得到$\tilde{\Omega}$区域上$C^1$解的整体存在性, 我们需要在任意给定的存在区域$\tilde{\Omega}(Y)=\{(\tilde{x}, \tilde{y})|0\leq \tilde{y}\leq Y, $ $ \tilde{x}\geq h(\tilde{y}) \}$上得到解$(\tilde{r}(\tilde{x}, \tilde{y}), \tilde{s}(\tilde{x}, \tilde{y}))$$C^1$范数的一致先验估计, 其中$Y>0$.

由(2.15)和(2.21)式, 我们得到

$ \begin{equation}\label{rs111} |\tilde{r}(\tilde{x}, \tilde{y})-r_0|, ~|\tilde{s}(\tilde{x}, \tilde{y})-s_0|\leq K_3 \epsilon, ~~~\forall (\tilde{x}, \tilde{y})\in\tilde{\Omega}(Y). \end{equation} $ (2.23)

下面我们希望得到区域$\tilde{\Omega}(Y)$$\frac{\partial\tilde{r}}{\partial\tilde{x}}$, $\frac{\partial\tilde{r}}{\partial\tilde{y}}$, $\frac{\partial\tilde{s}}{\partial\tilde{x}}$$\frac{\partial\tilde{s}}{\partial\tilde{y}}$$C^0$范数的一致先验估计.因为$(2.15)$式中的方程组只依赖于$\tilde{x}$, 为此我们引入

$ \begin{equation}\label{xin1} R={\rm e}^{q(\tilde{r}, \tilde{s})}\frac{\partial \tilde{r}}{\partial \tilde{y}}, \end{equation} $ (2.24)

其中$q(\tilde{r}, \tilde{s})\in C^{1}$满足

$ \begin{equation}\label{xin2} \frac{\partial q}{\partial \tilde{s}}=\frac{1}{\bar{\lambda_{1}}(\tilde{r}, \tilde{s})-\bar{\lambda_{2}}(\tilde{r}, \tilde{s})}\frac{\partial\bar{\lambda_{1}}}{\partial\tilde{s}}. \end{equation} $ (2.25)

由(2.15)-(2.18)式, 我们很容易得到

$ \begin{equation}\label{xin3} \left\{ \begin{array}{l} \frac{\partial R}{\partial \tilde{y}}+\tilde{\lambda_{1}}(\tilde{x}, \tilde{r}, \tilde{s})\frac{\partial R}{\partial \tilde{x}}={\rm e}^{-q(\tilde{r}, \tilde{s})}\frac{\partial\bar{\lambda_{1}}(\tilde{r}, \tilde{s})}{\partial\tilde{r}}\tilde{\lambda_{1}}(\tilde{x}, \tilde{r}, \tilde{s})R^{2}, \\[2mm] \tilde{y}=0:R=-{\rm e}^{q(r(\tilde{x}), s(\tilde{x}))}\tilde{\lambda_{1}}(\tilde{x}, r(\tilde{x}), s(\tilde{x}))r'(\tilde{x}), ~~\forall \tilde{x}\geq0 . \\ \end{array} \right. \end{equation} $ (2.26)

由(2.20)式可知, 经过任意给定点$(\tilde{x}, \tilde{y})=(\beta, 0)(\beta\geq0)$的每条特征线在有限的时间内会与区域$\tilde{\Omega}$的边界$\tilde{x}\geq h(\tilde{y})(\tilde{y}\geq0)$相交.结合(2.12)式可知, $\tilde{\Omega}\in\{(\tilde{x}, \tilde{y})\mid\tilde{x}\geq \frac{1}{2(g'(0)-f'(0))}\tilde{y}, \tilde{y}\geq0\}$.令$\tilde{x}=\tilde{x_{1}}(\tilde{y};\beta)$为过点$(\beta, 0)$的特征线, 其斜率为$\tilde{\lambda_{1}}(\tilde{x}, \tilde{r}, \tilde{s})$且与区域$\tilde{\Omega}$的边界相交于$(\tilde{x_{1}}(\tilde{Y};\beta), \tilde{Y})$, 其中$\tilde{x}= \frac{1}{2(g'(0)-f'(0))}\tilde{y}$.由(1.7), (2.18)和(2.23)式知, 对合适的小量$\delta>0$, 我们有

$ \begin{eqnarray}\label{xin4} \frac{\tilde{Y}}{2(g'(0)-f'(0))}&=&\tilde{x_{1}}(\tilde{Y};\beta)=\beta+\int_{0}^{\tilde{Y}}\tilde{\lambda_{1}}(\tilde{x}, \tilde{r}, \tilde{s}) (\tilde{x_{1}}(\tau;\beta), \tau){\rm d}\tau\\ &\leq & \beta+\frac{\tilde{Y}}{2(g'(0)-\bar{\lambda_1}(r_0, s_0))}. \end{eqnarray} $ (2.27)

于是我们得到

$ \begin{equation}\label{xin5} \tilde{Y}\leq M_0\beta, \end{equation} $ (2.28)

其中

$ \begin{equation}\label{xin6} M_0=\frac{2(g'(0)-f'(0))(g'(0)-\bar{\lambda_1}(r_0, s_0))}{f'(0)-\bar{\lambda_1}(r_0, s_0)}>0. \end{equation} $ (2.29)

另一方面, 我们有

$ \begin{eqnarray}\label{xin7} \frac{\tilde{Y}}{2(g'(0)-f'(0))}&=&\tilde{x_{1}}(\tilde{Y};\beta)=\beta+\int_{0}^{\tilde{Y}}\tilde{\lambda_{1}}(\tilde{x}, \tilde{r}, \tilde{s}) (\tilde{x_{1}}(\tau;\beta), \tau){\rm d}\tau\\ &\geq & \beta+\frac{2\tilde{Y}}{g'(0)-\bar{\lambda_1}(r_0, s_0)}. \end{eqnarray} $ (2.30)

于是我们得到

$ \begin{equation}\label{xin8} \tilde{Y}\geq M_1\beta, \end{equation} $ (2.31)

其中

$ \begin{equation}\label{xin9} M_1=\frac{2(g'(0)-f'(0))(g'(0)-\bar{\lambda_1}(r_0, s_0))}{4f'(0)-\bar{\lambda_1}(r_0, s_0)-3g'(0)}>0. \end{equation} $ (2.32)

利用(2.15)式, 在$\tilde{x}=\tilde{x_{1}}(\tilde{y};\beta)$上有

$ \begin{equation}\label{xin10} \tilde{r}(\tilde{x}, \tilde{y})=\tilde{r}(\tilde{x_{1}}(\tilde{y};\beta), \tilde{y})=r(\beta) \end{equation} $ (2.33)

$ \begin{equation}\label{xin11} \tilde{s}(\tilde{x}, \tilde{y})=\tilde{s}(\tilde{x_{1}}(\tilde{y};\beta), \tilde{y}). \end{equation} $ (2.34)

由(2.26)式可知, 在$\tilde{x}=\tilde{x_{1}}(\tilde{y};\beta)$上有

$ \begin{equation}\label{xin12} R(\tilde{x}, \tilde{y})=R(\tilde{x_{1}}(\tilde{y};\beta), \tilde{y})=\frac{-{\rm e}^{q(r(\beta), s(\beta))}\tilde{\lambda_1}(\beta, r(\beta), s(\beta))r'(\beta)}{1+B}, \end{equation} $ (2.35)

其中

$ \begin{eqnarray}\label{xin13} B&=&\int_{0}^{\tilde{y}}\frac{\partial\bar{\lambda_1}}{\partial \tilde{r}}(r(\beta), \tilde{s}(\tilde{x_{1}}(\tau;\beta), \tau)) {\rm e}^{q(r(\beta), s(\beta))-q(r(\beta), \tilde{s}(\tilde{x_{1}}(\tau;\beta), \tau))}\tilde{\lambda_1}(\beta, r(\beta), s(\beta))\\ &&\cdot\tilde{\lambda_1}(\tilde{x_{1}}(\tau;\beta), r(\beta), \tilde{s}(\tilde{x_{1}}(\tau;\beta), \tau))r'(\beta){\rm d}\tau. \end{eqnarray} $ (2.36)

于是, 由(2.24)式我们得到

$ \begin{equation}\label{xin14} \frac{\partial \tilde{r}}{\partial \tilde{y}}(\tilde{x_{1}}(\tilde{y};\beta), \tilde{y})=\frac{-{\rm e}^{q(r(\beta), s(\beta))-q(r(\beta), \tilde{s}(\tilde{x_{1}}(\tilde{y};\beta), \tilde{y}))} \tilde{\lambda_1}(\beta, r(\beta), s(\beta))r'(\beta)}{1+B}. \end{equation} $ (2.37)

注意到(2.21), (2.23)和(2.33)-(2.34)式, 我们有

$ \begin{equation}\label{xin15} {\rm e}^{2\mid q\mid}\mid \tilde{\lambda_1}\mid\leq M_2, ~~\Big| \frac{\partial\bar{\lambda_1}}{\partial \tilde{r}}\Big| {\rm e}^{2\mid q\mid}\tilde{\lambda_1}^2\leq M_3, \end{equation} $ (2.38)

其中$M_2$$M_3$是两个不依赖于$\epsilon$的正数.我们可以选择适当小的$\epsilon>0$使得

$ \begin{equation}\label{xin16} K_4M_0M_3\epsilon<\frac{1}{2}. \end{equation} $ (2.39)

于是, 注意到(2.22)式, 由(2.37)式我们得到

$ \begin{equation}\label{xin17}\Big| \frac{\partial \tilde{r}}{\partial \tilde{y}}(\tilde{x_{1}}(\tilde{y};\beta), \tilde{y})\Big|\leq M_2\frac{K_4\epsilon}{1+\beta}\Big(1-M_3\frac{K_4\epsilon}{1+\beta}\tilde{Y}\Big)^{-1}. \end{equation} $ (2.40)

于是, 利用(2.28)和(2.39)式, 我们得到

$ \begin{equation}\label{xin18}\Big| \frac{\partial \tilde{r}}{\partial \tilde{y}}(\tilde{x_{1}}(\tilde{y};\beta), \tilde{y})\Big|\leq M_2\frac{K_4\epsilon}{1+\beta}(1-K_4M_0M_3\epsilon)^{-1} \leq2K_4M_2\frac{\epsilon}{1+\beta}\leq\frac{K_5\epsilon}{1+\tilde{y}}, ~~0\leq \tilde{y}\leq Y. \end{equation} $ (2.41)

由(1.7), (2.12), (2.21), (2.33)和(2.34)式可知, 在$\tilde{x}=\tilde{x_{1}}(\tilde{y};\beta)$上有

$ \begin{equation}\label{xin19} 2(g'(0)-\bar{\lambda_1}(r_0, s_0))<g'(\tilde{x})-\bar{\lambda_1}(\tilde{r}, \tilde{s})<\frac{1}{2}(g'(0)-\bar{\lambda_1}(r_0, s_0)). \end{equation} $ (2.42)

于是, 注意到(2.18)和(2.42)式, 我们得到

$ \begin{equation}\label{xin20} \Big|\frac{\partial \tilde{r}}{\partial \tilde{x}(\tilde{x_{1}}(\tilde{y};\beta), \tilde{y})}\Big|\leq\frac{K_6\epsilon}{1+\tilde{y}}, ~~0\leq \tilde{y}\leq Y. \end{equation} $ (2.43)

最后, 我们得到

$ \begin{equation}\label{xin21} \Big|\frac{\partial \tilde{r}}{\partial \tilde{x}}(\tilde{x}, \tilde{y})\Big|, \Big| \frac{\partial \tilde{r}}{\partial \tilde{y}}(\tilde{x}, \tilde{y})\Big| \leq\frac{K_7\epsilon}{1+\tilde{y}}, ~~\forall(\tilde{x}, \tilde{y})\in \tilde{\Omega}(Y). \end{equation} $ (2.44)

类似地, 我们有

$ \begin{equation}\label{xin22} \Big|\frac{\partial \tilde{s}}{\partial \tilde{x}}(\tilde{x}, \tilde{y})\Big|, \Big|\frac{\partial \tilde{s}}{\partial \tilde{y}}(\tilde{x}, \tilde{y})\Big| \leq\frac{K_8\epsilon}{1+\tilde{y}}, ~~\forall(\tilde{x}, \tilde{y})\in \tilde{\Omega}(Y). \end{equation} $ (2.45)

于是, 在区域$\tilde{\Omega}$上, 我们得到了(2.15)式的唯一整体$C^{1}$$(\tilde{r}, \tilde{s})=(\tilde{r}(\tilde{x}, \tilde{y}), \tilde{s}(\tilde{x}, \tilde{y}))$.注意到(2.41)式, 在区域$\Omega$上, 我们得到了广义柯西问题($2.7$)的唯一整体$C^{1}$

$ \begin{equation}\label{xin23} (r, s)=(r(x, y), s(x, y))=(\tilde{r}(x, g(x)-y), \tilde{s}(x, g(x)-y)). \end{equation} $ (2.46)

由(2.23)式我们很容易得到

$ \begin{equation}\label{xin24} |r(x, y)-r_0|, ~|s(x, y)-s_0|\leq K_9 \epsilon, ~~\forall (x, y)\in \Omega, \end{equation} $ (2.47)

这表明我们的假设(2.13)式是合理的.而且, 注意到(1.7)式, 由(2.44)和(2.45)式可得

$ \begin{equation}\label{xin25} \Big|\frac{\partial r}{\partial x}(x, y)\Big|, \Big| \frac{\partial r}{\partial y}(x, y)\Big|, \Big| \frac{\partial s}{\partial x}(x, y)\Big|, \Big| \frac{\partial s}{\partial y}(x, y)\Big|\leq\frac{K_{10}\epsilon}{1+g(x)-y}, ~~\forall (x, y)\in \Omega. \end{equation} $ (2.48)

在上式中, $r$$s$$x$$f(x)$的函数, 于是区域$\Omega=\{(x, y)\mid x\geq 0, f(x)\leq y\leq g(x)\}$的边界$y=f(x)$可以由

$ \begin{equation}\label{xin26} \left\{ \begin{array}{l} f'(x)=-\frac{\sqrt[3]{2}(r+s)}{(3(r-s))^{\frac{2}{3}}}(x, f(x)), \\[2mm] f(0)=0 \end{array} \right. \end{equation} $ (2.49)

得到.注意到(1.7)和(2.47)-(2.48)式, 我们可以唯一地确定$y=f(x)\in C^2$满足(1.10)和(1.11)式.进而由$(u, v)$平面的激波极线可知, $f'(0)=\tan\theta_0$.

于是, 定理1.1得证.

参考文献
[1] Courant R, Friedrichs K O. Supersonic Flow and Shock Waves. New York: Interscience Publ Inc, 1948.
[2] Schaeffer D G. Supersonic flow past a nearly straight wedge. Duke Math J, 1976, 43: 637–670. DOI:10.1215/S0012-7094-76-04351-9
[3] Chen S X. Asymptotic behavior of supersonic flow past a convex combined wedge. Chinese Annals of Mathematics, 1998, 19B: 255–264.
[4] Zhang Y Q. Global existence of steady supersonic potential flow past a curvedwedge with a piecewise smoth boundary. SIAM Journal on Mathematical Analysis, 1999, 31: 166–183. DOI:10.1137/S0036141097331056
[5] Yin H C. Global existence of a shock for the supersonic flow past a curved wedge. Acta Mathematica Sinica, 2006, 22: 1425–1432. DOI:10.1007/s10114-005-0611-8
[6] Wang L. The problem for the supersonic plane flow past a curved wedge. Acta Mathematica Sinica, 2015, 35(3): 681–689.
[7] Qu A F, Chen S X. Riemann boundary value problems and reflection of shock for the Chaplygin gas. Science China Mathematics, 2012, 55(4): 671–685. DOI:10.1007/s11425-012-4393-z
[8] Li T T, Wang L B. Existence and uniqueness of global solution to inverse piston problem. Inverse problems, 2007, 23: 683–694. DOI:10.1088/0266-5611/23/2/013
[9] Li T T, Wang L B. Inverse piston problem for the system of one-dimensional isentropic flow. Chinese Annals of Mathematics, 2007, 28B: 265–282.
[10] Wang L B. Direct problem and inverse problem for the supersonic plane flow past a curved wedge. Math Meth Appl Sci, 2011, 34: 2291–2302.
[11] Hunter J, Brio M. Weak shock reflection. J Fluid Mech, 2000, 410: 235–261. DOI:10.1017/S0022112099008010
[12] Wang L. The configuration of shock wave reflection for the TSD equation. Acta Mathematica Sinica, 2013, 29(6): 1131–1158. DOI:10.1007/s10114-013-1489-5
[13] Li T T, Yu W C. Boundary Value Problems for Quasilinear Hyperbolic Systems. Durham: Duke University, 1985