对于实函数$f:[0, \infty)\rightarrow \mathbb{R}, $著名的Baskakov算子定义如下[1]
其中$v_{n, j}(x)={n+j-1 \choose j}x^{j}(1+x)^{-n-j}.$
关于该算子已经有了许多逼近结果[1-4].在文献[5, 9]中, Gal给出了该算子对具有指数增长的复函数在闭圆盘上逼近误差的定量估计.下面将进一步证明一类改进的Baskakov-Kantorovich算子对解析函数逼近误差的量化估计.改进的Baskakov-Kantorovich算子定义如下
其中$v_{n, j}(z)={n+j-1 \choose j}z^{j}(1+z)^{-n-j}.$
在复空间${\Bbb C}$上, 令${\Bbb D}_{R}:=\{z\in{\Bbb C}:|z|<R\}, $ $H({\Bbb D}_{R})$表示${\Bbb D}_{R}$上解析函数空间.若$f\in H({\Bbb D}_{R}), $有$f(z)=\sum\limits_{m=0}^{^{\infty}}a_{m}z^{m}.$本文中将得到改进的Baskakov-Kantorovich算子在紧圆盘上的逼近定理.
定理1.1 设$f\in H({\Bbb D}_{R})$且有界于$[0, \infty)$, 若$1\leq r<\frac{R}{2}, $ $\forall |z|\leq r$, $z\neq-1$及$n\in N$, 有
下面给出了紧圆盘上的一个Voronovskaja型结果.
定理1.2 在定理1.1的条件下, 若$1\leq r<\frac{R}{2}, $ $\forall|z|\leq r$, $z\neq-1$及$n\in N$, 有
应用定理1.2, 可以得到Baskakov-Kantorovich型算子在复空间的逼近阶.
定理1.3 在定理1.1的条件下, 当定理1.2中的级数收敛, 对于$f$在${\Bbb D}_R$上不是0阶多项式, 有
其中$C_{r}(f)$依赖于$f$和$r$, 但与$n$无关.
定理1.4 设$f\in H({\Bbb D}_{R})$, 即$\forall z\in {\Bbb D}_{R}, $有$f(z)=\sum\limits_{k=0}^{\infty}c_{k}z^{k}.$对所有的$k=0, 1, \cdots, $存在$M>0$和$A\in(\frac{1}{R}, 1)$使得$|c_{k}|\leq M\frac{A^{k}}{k!}$ (这反映了对所有$z\in {\Bbb D}_{R}, $有$|f(z)|\leq M{\rm e}^{A|z|}$).
(1) 若$R=+\infty, \frac{1}{R}=0, $即$f$是整函数, 当$|z|\leq r$时, $V_{n}^{\ast}(f, z)=\sum\limits_{k=0}^{\infty}c_{k}V_{n}^{\ast}(e_{k}, z)$.如果$f$不是阶小于等于0的多项式, 则
其中等价关系中常数$C_{r}(f)$取决于$f, r$.
(2) 若$R<\infty, $则复算子
也满足上述等价关系.
通过直接计算, 可以得到如下递推公式.
引理2.1 设$n\in{\Bbb N}, m\in{\Bbb N}\cup\{0\}, z\in{\Bbb C}, $ $e_{m}=z^{m}, $则
引理2.2 设$z\in{\Bbb C}, $则
证 利用不等关系[5, p127]
结合引理2.1, 可以得到
证毕.
引理2.3 设$n, m\in{\Bbb N}, z\in{\Bbb C}, $则
证 注意到[9, p11; 5, p126]
对(2.1)式求导, 有
进而
这里我们用到了
为了叙述方便, 下面引入一个符号.
定义
引理2.4 设$n, m\in{\Bbb N}, $我们有下面的递推公式
证 利用引理2.3 (2), 可以得到
定理1.1的证明 由引理2.3 (2), 得到
下面估计上式中的和如下
注意到$|P_{m}^{'}(z)|\leq\frac{m}{r}\|P_{m}\|_{r}, $ $\forall |z|\leq r, $ $r\geq1, $$z\not= -1, $其中$P_{m}(z)$是次数小于$m$的复多项式.从上述递推式(3.1)中, 有
当$k=1, 2, \cdots$时, 有
由于$V_{n}^{\ast}(f, z)$在${\Bbb D}_{R}$上解析, 结合(3.2)式, 对所有$|z|\leq r$, $z\not= -1, $有
定理1.1证毕.
定理1.2的证明 由(2.2)式和引理2.4, 可以得到
由文献[5, p127]知
应用不等关系
可知
下面估计$I_{9}$
利用(3.2)式及上述各项估计, 当$m\geq 2$时, 有
所以
最后, 可得
定理1.2证毕.
定理1.3的证明 设$z\in{\Bbb D}_{R}$和$n\in{\Bbb N}$, 则
应用
可以得到
由假设$f$在${\Bbb D}_{R}$上不是0阶多项式, 故$\|z(1+z)f''+(1-2z)f'\|_{r}>0.$事实上, 若否, 对$|z|\leq r, $ $(1-2z)f'(z)+z(1+z)f''(z)=0$.可以得到$(z(1+z)f'(z))'-4zf'(z)=0$.由此知$f'(z)=C\frac{(1+z)^{3}}{z}.$但是因为$f$在$\overline{{\Bbb D}_{r}}$上解析, 故对所有的$z\in\overline{{\Bbb D}_{r}}, $有$C=0, $与假设的矛盾.
由定理1.2, 当级数收敛时, 令$n\rightarrow \infty$, 有
所以, 存在$n_{1}$ (取决于$f$和$r$), 使得对所有的$n\geq n_{1}$, 有
这意味着当$n\geq n_{1}$时, 有
而当$1\leq n\leq n_{1}-1$时, 有
最后对所有$n$, 有
其中 $C_{r}(f)=\min\{M_{r, 1}(f), \cdots, M_{r, n_{1}-1}(f), \frac{1}{2}\|\frac{(1-2z)}{2}f'(z)+\frac{z(1+z)}{2}f''(z)\|_{r}\}$.证毕.