数学物理学报  2018, Vol. 38 Issue (3): 454-466   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
章春国
刘宇标
刘维维
Timoshenko梁的边界最优控制
章春国, 刘宇标, 刘维维     
杭州电子科技大学数学系 杭州 310018
摘要:该文研究Timoshenko梁的边界最优控制问题.首先运用线性算子半群理论得到了系统的适定性;进而针对目标函数,借助伴随系统得到系统的最优性(最大值)原理和相应的最优控制;最后通过齐次系统特征函数渐近展开,给出最优控制与最优轨线详尽的计算步骤.
关键词Timoshenko梁    边界最优控制    伴随系统    最大值原理    
Boundary Optimal Control for the Timoshenko Beam
Zhang Chunguo, Liu Yubiao, Liu Weiwei     
Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018
Abstract: This paper studies the boundary optimal control problem governed by a Timoshenko beam equation. Firstly, the well posedness of the system is token by using the theory of the linear operator semigroup. Based on the objective function, the optimality principle (the maximum principle) and the corresponding optimal control are obtained by using the adjoint system. Finally, by the eigenfunction asymptotic expansion of the homogeneous system, the exhaustive calculation steps of optimal control and optimal trajectory are given.
Key words: Timoshenko beam     Boundary optimal control     Adjoint system     Maximum principle    
1 引言

众所周知, Euler-Bernoulli梁、Timoshenko梁、Rayleigh梁等系统在航空飞行器及机器人手臂等柔性结构中有着广泛的应用, 引起许多数学与力学爱好者的广泛关注.诸如, 文献[1-9]研究的是Euler-Bernoulli梁、Timoshenko梁, Rayleigh梁的边界及内部控制的稳定性与能控性.然而, 关于Timoshenko梁的最优控制问题工作并不多, 就我们所知只有文献[10-12]所关注的问题.受到文献[7]的启发, 本文研究Timoshenko梁的最优减振问题, 更精确地说, 研究如下最优控制问题:寻找最小的作用(控制)力 $(f_{1}(t), f_{2}(t))$ 在给定的时间段内最大限度地使振动的梁趋于稳定, 并且使代价最小.也就是在容许控制集中, 即在 $f_{i}(t)\in U_{ad}=\left\{f_{i}|f_{i}\in L^{2}(0, T), \ i=1, 2\right\}$ 中, 寻求最优控制 $f_{i}^{\ast}(t)\in U_{ad}, i=1, 2$ , 使代价函数(性能指标)最小

$ \begin{equation} {{\rm minimize}} \quad J(f_{1}(t), f_{2}(t))=\sum\limits_{i=1}^{3} \mu_{i}J_{i}(f_{1}(t), f_{2}(t)), \label{1.1} \end{equation} $ (1.1)

其中, $\mu_{i}>0, i=1, 2, 3, \mu_{1}+\mu_{2}+\mu_{3}=1$ ,

$ \ \ \ J_{1}(f_{1}(t), f_{2}(t))=\int_{0}^{\pi}[w_{t}^{2}(x, T)+\varphi_{t}^{2}(x, T)]{\rm d}x, \\ J_{2}(f_{1}(t), f_{2}(t))=\int_{0}^{\pi}[pw^{2}(x, T)+q\varphi^{2}(x, T)]{\rm d}x, \\ \ \ \ \ \ \ J_{3}(f_{1}(t), f_{2}(t))=\int_{0}^{T}[f_{1}^{2}(t)+f_{2}^{2}(t)]{\rm d}t, $

且满足

$ \begin{equation} \left\{\begin{array}{lll} w_{tt}-pw_{xx}+ p \varphi_{x} =0, \quad 0<x<\pi, \quad 0<t<T, \\ \varphi_{tt}-q\varphi_{xx}-p w_{x}+p\varphi =0, \quad 0<x<\pi, \quad 0<t<T, \\ w(0, t)= \varphi_{x}(0, t)=0, \quad w(\pi, t)=f_{1}(t), \quad\varphi_{x}(\pi, t)=f_{2}(t), \quad 0<t<T, \\ w(x, 0)=w_{0}(x), w_{t}(x, 0)=z_{0}(x), \varphi(x, 0)=\varphi_{0}(x), \varphi_{t}(x, 0)=\psi_{0}(x), \quad 0<x<\pi , \end{array}\right. \label{1.2} \end{equation} $ (1.2)

这里 $w(x, t), \varphi(x, t)$ 分别表示梁在时刻 $t$ $x$ 处的横向位移与全转角, 正常数 $p, q$ 表示波传播速度, 且 $p\neq q$ .为了方便起见, 假定梁的长度为 $\pi$ , Timoshenko梁的力学边界条件是简支的.

本文首先运用线性算子半群理论得到状态约束系统的适定性, 同时提出最优控制问题;再利用相应的伴随系统得到最大值原理;然后对Timoshenko梁系统进行谱的渐近展开, 借助状态变量和伴随变量在终端时刻的关系得到最优控制问题解的显式渐近表示;最后给出具体的计算步骤.

2 Timoshenko梁系统的适定性与最优控制问题

定义系统(1.2)在时刻 $t$ 的有限能量为

$ E(t)=\frac{1}{2}\int_{0}^{\pi}(p| w_{x}-\varphi|^{2} +q|\varphi_{x}|^{2}+|w_{t}|^{2}+|\varphi_{t}|^{2}){\rm d}x. $

引入函数空间

$ W=\{u|u\in H^{1}(0, \pi), u(0)=0\}, $

其中 $H^{k}(0, \pi)$ $k$ 阶Sobolev空间(参见文献[13]),

$ V=W\times W, \quad H=L^{2}(0, \pi)\times L^{2}(0, \pi), $

赋予范数

$ \|(u_{1}, u_{2})\|_{V}^{2}=\int_{0}^{\pi}[p|(u_{1})_{x}-u_{2}|^{2}+q|(u_{2})_{x}|^{2}]{\rm d}x , \quad \|(v_{1}, v_{2})\|_{H}^{2}=\int_{0}^{\pi}(|v_{1}|^{2}+|v_{2}|^{2}){\rm d}x. $

于是, $V, H$ 均为实(复) Hilbert空间, 且具有范数 $\|(\cdot, \cdot)\|_{V}, \|(\cdot, \cdot)\|_{H}$ .

${{\cal H}}=V\times H$ , 赋予范数

$ \|Z\|_{{\cal H}}^{2}=\|(u_{1}, u_{2}, v_{1}, v_{2})\|_{{\cal H}}^{2} =\|(u_{1}, u_{2})\|_{V}^{2}+\|(v_{1}, v_{2})\|_{H}^{2}, $

那么 ${\cal H}$ 也是实(复)Hilbert空间.

$Z=(w, \varphi, z, \psi)$ , 在 ${\cal H}$ 中定义线性算子 ${\cal A}$ 如下

$ D({\cal A})=\left\{\begin{array}{lll} Z\in{{\cal H}}|(w, \varphi)\in H^{2}(0, \pi)\times H^{2}(0, \pi), (z, \psi)\in V , \\ w(0)=\varphi_{x}(0)=0, \quad w(\pi)=f_{1}(t), \varphi_{x}(\pi)=f_{2}(t). \end{array}\right\} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\cal A}Z=(z, \psi, pw_{xx}-p\varphi_{x}, q\varphi_{xx}+pw_{x}-p\varphi). $

于是, 可以将系统(1.2)改写成 ${\cal H}$ 上的抽象Cauchy问题

$ \left\{\begin{array}{lll} \frac{{\rm d}Z(t)}{{\rm d}t}={\cal A}Z(t), \\ Z(0)=Z_{0}, \end{array}\right. $

其中, $Z_{0}=(w_{0}, \varphi_{0}, z_{0}, \psi_{0})$ .

$f_{1}(t)=f_{2}(t)=0$ 时, 线性算子 ${\cal A}$ 变成为线性算子 ${\cal A}_{0}$ , 于是

$ D({\cal A}_{0})=\left\{\begin{array}{lll} Z\in{{\cal H}}|(w, \varphi)\in H^{2}(0, \pi)\times H^{2}(0, \pi), (z, \psi)\in V , \\ w(0)=\varphi_{x}(0)=0, \quad w(\pi)=\varphi_{x}(\pi)=0.\end{array}\right\} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\cal A}_{0}Z=(z, \psi, pw_{xx}-p\varphi_{x}, q\varphi_{xx}+pw_{x}-p\varphi). $

容易验证 ${\cal A}_{0}=-{\cal A}_{0}^{\ast}$ (斜伴随算子), 由文献[14, 定理1.10.8] (Stone定理)知, ${\cal A}_{0}$ 生成一个 ${\cal H}$ 上的等距 $C_{0}$ -半群 ${\rm e}^{{\cal A}_{0}t}$ .进一步由文献[14], 我们可以得到下面的经典的适定性结论:

定理1  对 $Z_{0}\in {\cal H}$ $(f_{1}(t), f_{2}(t))\in L^{2}(0, T)\times L^{2}(0, T)$ , 则控制系统(1.2)存在唯一的弱解

$ Z(t)\in C(0, T;V)\cap C^{1}(0, T;H). $

根据文献[15]中的定理1可知, 我们所研究的Timoshenko梁系统的最优边界控制问题是可行的.

因此, Timoshenko梁系统的最优边界控制问题(1.1)-(1.2)可以表述为

$ \begin{equation} J(f_{1}^{\ast}(t), f_{2}^{\ast}(t))=\min\limits_{f_{1}, f_{2}\in U_{ad}} J(f_{1}(t), f_{2}(t)), \label{2.1} \end{equation} $ (2.1)

其中 $(f_{1}^{\ast}(t), f_{2}^{\ast}(t))$ 是最优控制.

3 最大值原理

为了得到最优控制问题(2.1)的最大值原理, 我们需要引入如下的伴随变量 $(u(x, t), \theta(x, t))$ , 满足方程

$ \begin{equation} \left\{\begin{array}{lll} u_{tt}-pu_{xx}+ p\theta_{x} =0, \quad&0<x<\pi, \quad 0<t<T, \\ \theta_{tt}-q\theta_{xx}-pu_{x}+p\theta =0, \quad &0<x<\pi, \quad 0<t<T, \end{array}\right. \label{3.1} \end{equation} $ (3.1)

边界条件

$ \begin{equation} u(0, t)= \theta_{x}(0, t)=u(\pi, t)=\theta_{x}(\pi, t)=0, \quad 0<t<T, \label{3.2} \end{equation} $ (3.2)

终端条件

$ \begin{equation} \left\{\begin{array}{lll} u(x, T)=2\mu_{1}w_{t}(x, T), \quad u_{t}(x, T)=-2p\mu_{2}w(x, T), \quad &0<x<\pi, \\ \theta(x, T)=2\mu_{1}\varphi_{t}(x, T), \quad \theta_{t}(x, T)=-2q\mu_{2}\varphi(x, T), \quad &0<x<\pi. \end{array}\right. \label{3.3} \end{equation} $ (3.3)

对于 $f_{i}(t)\in U_{ad}, i=1, 2$ , 令

$ w(x, t)=w(x, t, f_{1}, f_{2}), \quad \varphi(x, t)=w(x, t, f_{1}, f_{2}) $

满足方程(1.2), 且记

$ w^{\ast}(x, t)=w(x, t, f_{1}^{\ast}, f_{2}^{\ast}), \quad \varphi^{\ast}(x, t)=\varphi(x, t, f_{1}^{\ast}, f_{2}^{\ast}) $

为最优轨线以及相应的最优伴随变量为

$ u^{\ast}(x, t)=u(x, t, f_{1}^{\ast}, f_{2}^{\ast}), \quad \theta^{\ast}(x, t)=\theta(x, t, f_{1}^{\ast}, f_{2}^{\ast}), $

同时, 它们分别满足方程(3.1)及其边界条件(3.2)和终端条件(3.3).

接下来, 我们给出本文的主要结果(最大值原理):

定理2(最大值原理)  如果最优控制 $f_{i}^{\ast}(t)\in U_{ad}, i=1, 2$ 满足最大值问题

$ \begin{equation} \max\limits_{f_{1}, f_{2}\in U_{ad}}H(T, u^{\ast}, \theta^{\ast}, f_{1}, f_{2})= H(T, u^{\ast}, \theta^{\ast}, f_{1}^{\ast}, f_{2}^{\ast}), \label{3.4} \end{equation} $ (3.4)

其中

$ \begin{equation} H(T, u, \theta, f_{1}, f_{2})= R_{1}(t)f_{1}(t)+R_{2}(t)f_{2}(t)+\mu_{3}f_{1}^{2}(t)+\mu_{3}f_{2}^{2}(t) \label{3.5} \end{equation} $ (3.5)

为Hamilton函数且 $R_{1}(t)=p(\theta(\pi, t)-u_{x}(\pi, t)), \quad R_{2}(t)=q\theta(\pi, t)$ .

那么

$ \begin{equation} J(f_{1}^{\ast}, f_{2}^{\ast})\leq J(f_{1}, f_{2}), \quad f_{i}(t)\in U_{ad}, i=1, 2.\label{3.6} \end{equation} $ (3.6)

  为了方便起见, 首先我们引入算子

$ \begin{equation} \Psi(w, \varphi)=w_{tt}-pw_{xx}+p\varphi_{x}, \quad \Phi(w, \varphi)=\varphi_{tt}-q\varphi_{xx}-pw_{x}+p\varphi, \label{3.7} \end{equation} $ (3.7)

并且记

$ \Delta w(x, t)=w(x, t)-w^{\ast}(x, t), \quad \Delta \varphi(x, t)=\varphi(x, t)-\varphi^{\ast}(x, t), \\ \ \ \ \ \ \ \ \ \ \ \ \ \Delta f_{1}(t)=f_{1}(t)-f_{1}^{\ast}(t), \quad \Delta f_{2}(t)=f_{2}(t)-f_{2}^{\ast}(t).\label{3.8} $ (3.8)

于是

$ \begin{equation}(\Psi(\Delta w, \Delta\varphi), \Phi(\Delta w, \Delta\varphi))-(\Delta f_{1}(t), \Delta f_{2}(t))=0, \label{3.9} \end{equation} $ (3.9)

于此同时, 边界条件转化为

$ \begin{equation}\Delta w(0, t)=\Delta\varphi(0, t)=0, \quad\Delta w(\pi, t)=\Delta f_{1}(t), \quad\Delta\varphi_{x}(\pi, t)=\Delta f_{2}(t), \label{3.10} \end{equation} $ (3.10)

初始条件转化为

$ \begin{equation}\Delta w(x, 0)=\Delta w_{t}(x, 0)=0, \quad\Delta\varphi(x, 0)=\Delta\varphi_{x}(x, 0)=0, \label{3.11} \end{equation} $ (3.11)

为了寻求最优解, 我们由(1.2), (3.1)和(3.7)-(3.9)式运用乘子、分部积分、边界条件和初值条件得到如下形式

$ \begin{eqnarray}\label{3.12} 0&=&\int_{0}^{\pi}\int_{0}^{T}[\Delta w\Psi(u, \theta)+\Delta\varphi\Phi(u, \theta)-u\Psi(\Delta w, \Delta\varphi)-\theta\Phi(\Delta w, \Delta\varphi)]{\rm d}t{\rm d}x\\ &=&\int_{0}^{\pi}\int_{0}^{T}[\Delta w(u_{tt}-pu_{xx}+p\theta_{x})+\Delta\varphi(\theta_{tt}-q\theta_{xx}-pu_{x}+p\theta)\\ &&-u(\Delta w_{tt}-p\Delta w_{xx}+p\Delta\varphi_{x})-\theta(\Delta\varphi_{tt}-q\Delta\varphi_{xx}-p\Delta w_{x}+p\Delta\varphi)]{\rm d}t{\rm d}x\\ &=&\int_{0}^{\pi}\int_{0}^{T}(\Delta wu_{tt}-u\Delta w_{tt}){\rm d}t{\rm d}x\\ &&+\int_{0}^{\pi}\int_{0}^{T}(\Delta\varphi\theta_{tt}-\theta\Delta \varphi_{tt}){\rm d}t{\rm d}x+q\int_{0}^{\pi}\int_{0}^{T}(\theta\Delta\varphi_{xx}-\Delta\varphi\theta_{xx}){\rm d}t{\rm d}x\\ &&+p\int_{0}^{\pi}\int_{0}^{T}[\Delta w(\theta-u_{x})_{x}-u(\Delta\varphi-\Delta w_{x})_{x}+\Delta\varphi(\theta-u_{x})-\theta(\Delta\varphi-\Delta w_{x})]{\rm d}t{\rm d}x\\ &=&\int_{0}^{\pi}[\Delta w(x, T)u_{t}(x, T)-u(x, T)\Delta w_{t}(x, T)]{\rm d}x\\ &&+\int_{0}^{\pi}[\Delta\varphi(x, T)\theta_{t}(x, T)-\theta(x, T)\Delta\varphi_{t}(x, T)]{\rm d}x\\ &&+q\int_{0}^{T}\theta(\pi, t)\Delta\varphi_{x}(\pi, t){\rm d}t+p\int_{0}^{T}\Delta w(\pi, t)(\theta(\pi, t)-u_{x}(\pi, t)){\rm d}t. \end{eqnarray} $ (3.12)

于是有

$ \begin{eqnarray}\label{3.13} &&\int_{0}^{\pi}[u(x, T)\Delta w_{t}(x, T)-\Delta w(x, T)u_{t}(x, T)]{\rm d}x\\ &&+\int_{0}^{\pi}[\theta(x, T)\Delta\varphi_{t}(x, T)-\Delta\varphi(x, T)\theta_{t}(x, T)]{\rm d}x\\ &=&\int_{0}^{T}[p\Delta w(\pi, t)(\theta(\pi, t)-u_{x}(\pi, t))+q\theta(\pi, t)\Delta\varphi_{x}(\pi, t)]{\rm d}t. \end{eqnarray} $ (3.13)

由将伴随系统终止条件(3.3)代入等式(3.13)的左边得

$ \begin{eqnarray}\label{3.14} &&\int_{0}^{\pi}2\mu_{1}[w_{t}(x, T)\Delta w_{t}(x, T)+\varphi_{t}(x, T)\Delta\varphi_{t}(x, T)]{\rm d}x\\ &&+\int_{0}^{\pi}2\mu_{2}[pw(x, T)\Delta w(x, T)+q\varphi(x, T)\Delta\varphi(x, T)]{\rm d}x\\ &=&\int_{0}^{T}[p\Delta w(\pi, t)(\theta(\pi, t)-u_{x}(\pi, t))+q\theta(\pi, t)\Delta\varphi_{x}(\pi, t)]{\rm d}t. \end{eqnarray} $ (3.14)

现在我们考虑代价函数(性能指标)的增量

$ \begin{eqnarray}\label{3.15} \Delta J(f_{1}, f_{2}) &=&J(f_{1}, f_{2})-J(f_{1}^{\ast}, f_{2}^{\ast})\\ &=&\int_{0}^{\pi}\{\mu_{1}[(w_{t}^{2}(x, T)-w_{t}^{\ast 2}(x, T))+(\varphi_{t}^{2}(x, T)-\varphi_{t}^{\ast 2}(x, T))]\\ &&+\mu_{2}[p(w^{2}(x, T)-w^{\ast 2}(x, T))+q(\varphi^{2}(x, T)-\varphi^{\ast 2}(x, T))]\}{\rm d}x\\ &\quad&+\int_{0}^{T}\mu_{3}[(f_{1}^{2}(t)-f_{1}^{\ast2}(t))+(f_{2}^{2}(t)-f_{2}^{\ast2}(t))]{\rm d}t. \end{eqnarray} $ (3.15)

将(3.15)式中的 $w_{t}^{2}(x, T), $ $\varphi_{t}^{2}(x, T), $ $w^{2}(x, T), $ $\varphi^{2}(x, T)$ 分别关于 $w_{t}^{\ast}(x, T), $ $\varphi_{t}^{\ast}(x, T), $ $w^{\ast}(x, T), $ $\varphi^{\ast}(x, T)$ 按Taylor级数展开得

$ \begin{equation} \begin{array}{ll}\label{3.16} w_{t}^{2}(x, T)-w_{t}^{\ast 2}(x, T)=2w_{t}^{\ast}(x, T)\Delta w_{t}(x, T)+r_{1}, \\ \varphi_{t}^{2}(x, T)-\varphi_{t}^{\ast 2}(x, T)=2\varphi_{t}^{\ast}(x, T)\Delta\varphi_{t}(x, T)+r_{2}, \\ w^{2}(x, T)-w^{\ast 2}(x, T)=2w^{\ast}(x, T)\Delta w(x, T)+r_{3}, \\ \varphi^{2}(x, T)-\varphi^{\ast 2}(x, T)=2\varphi^{\ast}(x, T)\Delta\varphi(x, T)+r_{4}, \end{array}\end{equation} $ (3.16)

其中 $r_{1}=(\Delta w_{t}(x, T))^{2}\geq0, r_{2}=(\Delta\varphi_{t}(x, T))^{2}\geq0, r_{3}=(\Delta w(x, T))^{2}\geq0, r_{4}=(\Delta\varphi(x, T))^{2}\geq0, $ 将(3.16)式代入(3.15)式得

$ \begin{eqnarray}\label{3.17} \Delta J(f_{1}, f_{2}) &=&\int_{0}^{\pi}\{\mu_{1}[(2w_{t}^{\ast}(x, T)\Delta w_{t}(x, T)+r_{1})+(2\varphi_{t}^{\ast}(x, T)\Delta\varphi_{t}(x, T)+r_{2})]\\ &&+\mu_{2}[p(2w^{\ast}(x, T)\Delta w(x, T)+r_{3})+q(2\varphi^{\ast}(x, T)\Delta\varphi(x, T)+r_{4})]\}{\rm d}x\\ &&+\int_{0}^{T}\mu_{3}[(f_{1}^{2}(t)-f_{1}^{\ast2}(t))+(f_{2}^{2}(t)-f_{2}^{\ast2}(t))]{\rm d}t. \end{eqnarray} $ (3.17)

由于 $\mu_{1}(r_{1}+r_{2})+\mu_{2}(pr_{3}+qr_{4})\geq0$ , 因此, 由(3.13), (3.14)和(3.17)式得

$ \begin{eqnarray}\label{3.18} \Delta J(f_{1}, f_{2}) &\geq&\int_{0}^{T}[p(\theta(\pi, t)-u_{x}(\pi, t))\Delta f_{1}(t)+q\theta(\pi, t)\Delta f_{2}(t)]{\rm d}t\\ &&+\int_{0}^{T}\mu_{3}[(f_{1}^{2}(t)-f_{1}^{\ast2}(t))+(f_{2}^{2}(t)-f_{2}^{\ast2}(t))]{\rm d}t\\ &=&\int_{0}^{T}\{[R_{1}f_{1}(t)+\mu_{3}f_{1}^{2}(t)+R_{2}f_{2}(t)+\mu_{3}f_{2}^{2}(t)]\\ &&-[R_{1}f_{1}^{\ast}(t)+\mu_{3}f_{1}^{\ast2}(t)+R_{2}f_{2}^{\ast}(t)+\mu_{3}f_{2}^{\ast2}(t)]\}{\rm d}t, \end{eqnarray} $ (3.18)

这里, $R_{1}=p(\theta(\pi, t)-u_{x}(\pi, t)), R_{2}=q\theta(\pi, t)$ .

由(3.4)-(3.5)式得

$ \begin{equation} R_{1}f_{1}(t)+\mu_{3}f_{1}^{2}(t)+R_{2}f_{2}(t)+\mu_{3}f_{2}^{2}(t) \leq R_{1}f_{1}^{\ast}(t)+\mu_{3}f_{1}^{\ast2}(t)+R_{2}f_{2}^{\ast}(t)+\mu_{3}f_{2}^{\ast2}(t). \label{3.19}\end{equation} $ (3.19)

考察不等式(3.18)-(3.19)有

$ \Delta J(f_{1}, f_{2})\geq0, $

$ J(f_{1}^{\ast}, f_{2}^{\ast})\leq J(f_{1}, f_{2}). $

因此, $(f_{1}^{\ast}, f_{2}^{\ast})$ 即为所求的最优控制.

并且, 所求的最优控制可以表示为

$ \begin{equation} (f_{1}^{\ast}(t), f_{2}^{\ast}(t))=-\frac{1}{2\mu_{3}}(p[\theta(\pi, t)-u_{x}(\pi, t)], q\theta(\pi, t)).\label{3.20}\end{equation} $ (3.20)
4 最优问题(2.1)的计算

本节我们给出边界最优控制问题(2.1)的计算步骤.我们分以下几个步骤来处理.

4.1 特征值和特征函数的计算

首先计算系统(1.2)对应齐次系统的特征值与特征函数, 我们考虑如下的特征问题

$ \begin{equation}\left\{\begin{array}{lll} \lambda^{2}w-pw_{xx}+p\varphi_{x}=0, \\ \lambda^{2}\varphi-q\varphi_{xx}-pw_{x}+p\varphi=0, \\ w(0)=w(\pi)=\varphi_{x}(0)=\varphi_{x}(\pi)=0, \end{array}\right. \label{4.1}\end{equation} $ (4.1)

分别消去 $\varphi$ $w$ 得到特征值

$ \begin{equation}\left\{\begin{array}{lll} \lambda_{n, 1}^{2}=\frac{1}{2}\left\{-[(p+q)n^{2}+p]+\sqrt{[(p-q)n^{2}+p]^{2}+4pqn^{2}}\right\}, \\ \lambda_{n, 2}^{2}=\frac{1}{2}\left\{-[(p+q)n^{2}+p]-\sqrt{[(p-q)n^{2}+p]^{2}+4pqn^{2}}\right\}, \end{array}\right. \label{4.2}\end{equation} $ (4.2)

和相应的特征函数

$ \begin{equation} w_{n}=\sin nx, \quad \varphi_{0}=1, \quad\varphi_{n}=\cos nx\quad n=1, 2, \cdots. \label{4.3}\end{equation} $ (4.3)
4.2 最优控制的计算

通过求解伴随系统(3.1)-(3.3)可以得到最优控制序列.由伴随系统(3.1) $-$ (3.3)得到如下的最优轨线序列

$ \begin{equation} u_{N}^{\ast}(x, t)=\sum\limits_{n=1}^{N}S_{n}(t)\sin nx, \quad N\in {\Bbb N}, \label{4.4}\end{equation} $ (4.4)
$ \begin{equation} \theta_{N}^{\ast}(x, t)=Q_{0}(t)+\sum\limits_{n=1}^{N}Q_{n}(t)\cos nx, \quad N\in {\Bbb N}, \label{4.5}\end{equation} $ (4.5)

其中, $Q_{0}(t)=b_{0, 1}\cos \sqrt{p}t+b_{0, 2}\sin \sqrt{p}t$ , $S_{n}(t), Q_{n}(t), n=1, 2, \cdots, N$ 有下列四种显式表示

$ \begin{equation} \left\{\begin{array}{lll} ({\rm i})\quad S_{n}(t)=a_{n, 1}\cos\lambda_{n, 1}t+a_{n, 2}\sin\lambda_{n, 1}t, \quad & Q_{n}(t)=a_{n, 3}\cos\lambda_{n, 1}t+a_{n, 4}\sin\lambda_{n, 1}t, \\ ({\rm ii})\quad S_{n}(t)=b_{n, 1}\cos\lambda_{n, 1}t+b_{n, 2}\sin\lambda_{n, 1}t, \quad & Q_{n}(t)=b_{n, 3}\cos\lambda_{n, 2}t+b_{n, 4}\sin\lambda_{n, 2}t, \\ ({\rm iii})\quad S_{n}(t)=c_{n, 1}\cos\lambda_{n, 2}t+c_{n, 2}\sin\lambda_{n, 2}t, \ &Q_{n}(t)=c_{n, 3}\cos\lambda_{n, 1}t+c_{n, 4}\sin\lambda_{n, 1}t, \\ ({\rm iv})\quad S_{n}(t)=d_{n, 1}\cos\lambda_{n, 2}t+d_{n, 2}\sin\lambda_{n, 2}t, \ &Q_{n}(t)=d_{n, 3}\cos\lambda_{n, 2}t+d_{n, 4}\sin\lambda_{n, 2}t, \end{array}\right.\label{4.6}\end{equation} $ (4.6)

这里 $a_{n, j}, b_{n, j}, c_{n, j}, d_{n, j}, j=1, 2, 3, 4$ 均是后面会确定的正常数.

于是

$ \begin{equation} (u_{N}^{\ast})_{x}(x, t)=\sum\limits_{n=1}^{N}nS_{n}(t)\cos nx. \label{4.7}\end{equation} $ (4.7)

将(4.5), (4.6)和(4.7)式代入(3.20)式得最优控制序列

$ \begin{equation} (f_{N, 1}^{\ast}(t), f_{N, 2}^{\ast}(t))=-\frac{1}{2\mu_{3}}(p[Q_{0}(t)+\sum\limits_{n=1}^{N}(-1)^{n}(Q_{n}(t)-nS_{n}(t))], q\sum\limits_{n=1}^{N}(-1)^{n}Q_{n}(t)).\label{4.8}\end{equation} $ (4.8)
4.3 最优轨线的计算

接下来, 先齐次化系统(1.2)的边界, 于是引入变量

$ \begin{equation} \left\{\begin{array}{lll} \overline{w}(x, t)=w(x, t)-\frac{f_{1}(t)}{\pi}x, \\ \overline{\varphi}(x, t)=\varphi(x, t)-\frac{f_{2}(t)}{2\pi}x^{2}, \end{array}\right.\label{4.9}\end{equation} $ (4.9)

那么受控系统(1.2)改写为

$ \begin{equation} \left\{\begin{array}{lll} \overline{w}_{tt}(x, t)-p\overline{w}_{xx}(x, t)+p\overline{\varphi}_{x}(x, t)=-\frac{1}{\pi}f''_{1}(t)x-\frac{p}{\pi}f_{2}(t)x, \\ \overline{\varphi}_{tt}(x, t)-q\overline{\varphi}_{xx}(x, t) -p\overline{w}_{x}(x, t)+p\overline{\varphi}(x, t)\\ \ \ = -\frac{1}{2\pi}f''_{2}(t)x^{2}+\frac{p}{\pi}f_{1}(t)+\frac{q}{\pi}f_{2}(t)-\frac{p}{2\pi}f_{2}(t)x^{2}, \\ \end{array}\right.\label{4.10}\end{equation} $ (4.10)

这里"'"表示对时间 $t$ 的导数.

相应的边界条件为

$ \begin{equation} \left\{\begin{array}{lll} \overline{w}(0, t)=\overline{w}(\pi, t)=0, \\ \overline{\varphi}_{x}(0, t)=\overline{\varphi}_{x}(\pi, t)=0, \end{array}\right.\label{4.11}\end{equation} $ (4.11)

初始条件为

$ \begin{equation} \left\{\begin{array}{lll} \overline{w}(x, 0)=w_{0}(x)-\frac{x}{\pi}f_{1}(0), \quad \overline{w}_{t}(x, 0)=z_{0}(x)-\frac{x}{\pi}f'_{1}(0), \\ \overline{\varphi}_{x}(x, 0)=\varphi_{0}(x)-\frac{x^{2}}{2\pi}f_{2}(0), \quad \overline{\varphi}_{t}(x, 0)=\psi_{0}(x)-\frac{x^{2}}{2\pi}f'_{2}(0). \end{array}\right.\label{4.12}\end{equation} $ (4.12)

类似地, (4.10)-(4.11)式对应的齐次系统的近似最优轨线为

$ \begin{equation} \left\{\begin{array}{lll} \overline{w}_{N}(x, t)=\sum\limits_{n=1}^{N}Y_{n}(t)\sin nx, \\ \overline{\varphi}_{N}(x, t)=Z_{0}(t)+\sum\limits_{n=1}^{N}Z_{n}(t)\cos nx. \end{array}\right.\label{4.13}\end{equation} $ (4.13)

将(4.13)式代入(4.10)式得

$ \begin{equation} \left\{\begin{array}{lll} \sum\limits_{n=1}^{N}Y''_{n}(t)\sin nx+p\sum\limits_{n=1}^{N}n^{2}Y_{n}(t)\sin nx -p\sum\limits_{n=1}^{N}nZ_{n}(t)\sin nx\\ \ \ \ =-\frac{1}{\pi}f''_{1}(t)x-\frac{p}{\pi}f_{2}(t)x, \\ Z''_{0}(t)+pZ_{0}(t)+\sum\limits_{n=1}^{N}Z''_{n}(t)\cos nx +q\sum\limits_{n=1}^{N}n^{2}Z_{n}(t)\cos nx\\ -p\sum\limits_{n=1}^{N}nY_{n}(t)\cos nx +p\sum\limits_{n=1}^{N}Z_{n}(t)\cos nx\\ \ \ \ =-\frac{1}{2\pi}f''_{2}(t)x^{2}+\frac{p}{\pi}f_{1}(t)+\frac{q}{\pi}f_{2}(t)-\frac{p}{2\pi}f_{2}(t)x^{2}, \end{array}\right.\label{4.14}\end{equation} $ (4.14)

将(4.14)式的 $x$ 展开成 $[0, \pi]$ 上的正弦级数; $x^{2}$ 展开成 $[0, \pi]$ 上的余弦级数, 并利用正(余)弦级数的正交性得

$ \begin{equation} \left\{\begin{array}{lll} Y''_{n}(t)+pn^{2}Y_{n}(t)-pnZ_{n}(t)=\frac{2}{n\pi}(-1)^{n}f''_{1}(t)x+\frac{2p}{n\pi}(-1)^{n}f_{2}(t), \\ Z''_{n}(t)+(p+qn^{2})Z_{n}(t)-pnY_{n}(t)=\frac{2}{n^{2}\pi}(-1)^{n+1}f''_{2}(t)+\frac{2p}{n^{2}\pi}(-1)^{n+1}f_{2}(t), \\ Z''_{0}(t)+pZ_{0}(t)=\frac{p}{\pi}f_{1}(t)+\frac{q}{\pi}f_{2}(t)-\frac{\pi}{6}f''_{2}(t)-\frac{p\pi}{6}f_{2}(t). \end{array}\right.\label{4.15}\end{equation} $ (4.15)

由(4.15)式得

$ \begin{eqnarray} &&Y_{n}^{(4)}(t)+[(p+q)n^{2}+p]Y''_{n}(t)+pqn^{4}Y_{n}(t)\\ &=&\frac{2}{n\pi}(-1)^{n}f_{1}^{(4)}(t)+\frac{2(p+qn^{2})}{n\pi}(-1)^{n}f''_{1}(t)+\frac{2pqn}{\pi}(-1)^{n}f_{2}(t). \label{4.16}\end{eqnarray} $ (4.16)

(4.16)式对应的齐次方程的通解为

$ \begin{equation} Y_{n}(t)=h_{n, 1}\cos\lambda_{n, 1}t+h_{n, 2}\sin\lambda_{n, 1}t+h_{n, 3}\cos\lambda_{n, 2}t+h_{n, 4}\sin\lambda_{n, 2}t. \label{4.17}\end{equation} $ (4.17)

其中 $\lambda_{n, 1}, \lambda_{n, 2}$ 由(4.2)式给出.

利用常数变易法得方程(4.16)的解为

$ \begin{eqnarray}\label{4.18} Y_{n}(t) =\frac{\cos\lambda_{n, 1}t}{\lambda_{n, 1}(\lambda_{n, 1}^{2}-\lambda_{n, 2}^{2})}\int_{0}^{t}\sin\lambda_{n, 1}\tau\rho_{n}(\tau){\rm d}\tau -\frac{\sin\lambda_{n, 1}t}{\lambda_{n, 1}(\lambda_{n, 1}^{2}-\lambda_{n, 2}^{2})}\int_{0}^{t}\cos\lambda_{n, 1}\tau\rho_{n}(\tau){\rm d}\tau\\ \ \ \ \ \ \ \ \ \ \ \ -\frac{\cos\lambda_{n, 2}t}{\lambda_{n, 2}(\lambda_{n, 1}^{2}-\lambda_{n, 2}^{2})}\int_{0}^{t}\sin\lambda_{n, 2}\tau\rho_{n}(\tau){\rm d}\tau +\frac{\sin\lambda_{n, 2}t}{\lambda_{n, 2}(\lambda_{n, 1}^{2}-\lambda_{n, 2}^{2})}\int_{0}^{t}\cos\lambda_{n, 2}\tau\rho_{n}(\tau){\rm d}\tau, \\ \end{eqnarray} $ (4.18)

这里, $\rho_{n}(t)=\frac{2}{n\pi}(-1)^{n}f_{1}^{(4)}(t) +\frac{2(p+qn^{2})}{n\pi}(-1)^{n}f''_{1}(t)+\frac{2pqn}{\pi}(-1)^{n}f_{2}(t)$ .

将(4.18)式代入(4.15)式的第一式即可解得 $Z_{n}(t), n=1, 2, \cdots$ , 同时, $Z_{0}(t)$ 可以由(4.15)式的最后一式解得.

因此, 由(4.9)和(4.13)式可得

$ \begin{equation} (w_{N})_{t}(x, t)=\sum\limits_{n=1}^{N}Y'_{n}(t)\sin nx+\frac{f'_{1}(t)}{\pi}x, \label{4.19}\end{equation} $ (4.19)
$ \begin{equation} (w_{N})_{x}(x, t)=\sum\limits_{n=1}^{N}nY_{n}(t)\sin nx+\frac{f_{1}(t)}{\pi}, \label{4.20}\end{equation} $ (4.20)
$ \begin{equation} (\varphi_{N})_{t}(x, t)=Z'_{0}(t)+\sum\limits_{n=1}^{N}Z'_{n}(t)\cos nx+\frac{f'_{2}(t)}{2\pi}x^{2}, \label{4.21}\end{equation} $ (4.21)
$ \begin{equation} (\varphi_{N})_{x}(x, t)=-\sum\limits_{n=1}^{N}nZ_{n}(t)\sin nx+\frac{f_{2}(t)}{\pi}x. \label{4.22}\end{equation} $ (4.22)

下面来确定(4.6)式的系数.

1 $^{{\rm o}}$ .对于(4.8)式中的(ⅰ), 根据终端条件(3.3)以及(4.4)和(4.19)-(4.20)式得

$ \left\{\begin{array}{lll} \sum\limits_{n=1}^{N}(a_{n, 1}\cos\lambda_{n, 1}T+a_{n, 2}\sin\lambda_{n, 1}T)\sin nx =2\mu_{1}\bigg[\sum\limits_{n=1}^{N}Y'_{n}(T)\sin nx+\frac{f'_{1}(T)}{\pi}x\bigg], \\ \sum\limits_{n=1}^{N}(-a_{n, 1}\lambda_{n, 1}\sin\lambda_{n, 1}T+a_{n, 2}\lambda_{n, 1} \cos\lambda_{n, 1}T)\sin nx=2p\mu_{2} \bigg[\sum\limits_{n=1}^{N}nY_{n}(T)\cos nx+\frac{f_{1}(T)}{\pi}\bigg], \end{array}\right. $

于是

$ \left\{\begin{array}{lll} a_{n, 1}\cos\lambda_{n, 1}T+a_{n, 2}\sin\lambda_{n, 1}T=2\mu_{1}Y'_{n}(T)+\frac{4\mu_{1}(-1)^{n}f'_{1}(T)}{n\pi}, \\ -a_{n, 1}\lambda_{n, 1}\sin\lambda_{n, 1}T+a_{n, 2}\lambda_{n, 1}\cos\lambda_{n, 1}T=\frac{4p\mu_{2}[(-1)^{n+1}+1]f_{1}(T)}{n\pi^{2}}, \end{array}\right. $

解之得

$ \left\{\begin{array}{rl} a_{n, 1}=&2\mu_{1}Y'_{n}(T)\cos\lambda_{n, 1}T+\frac{4\mu_{1}(-1)^{n}f'_{1}(T)\cos\lambda_{n, 1}T}{n\pi} \\ & -\frac{4p\mu_{2}[(-1)^{n+1}+1]f_{1}(T)\sin\lambda_{n, 1}T}{n\lambda_{n, 1}\pi^{2}}, \\ a_{n, 2}=&2\mu_{1}Y'_{n}(T)\sin\lambda_{n, 1}T+\frac{4\mu_{1}(-1)^{n}f'_{1}(T)\sin\lambda_{n, 1}T}{n\pi} \\ & +\frac{4p\mu_{2}[(-1)^{n+1}+1]f_{1}(T)\cos\lambda_{n, 1}T}{n\lambda_{n, 1}\pi^{2}}. \end{array}\right. $

再根据终端条件(3.3)以及(4.5)和(4.21)-(4.22)式得

$ \left\{\begin{array}{rl} &\sum\limits_{n=1}^{N}(a_{n, 3}\cos\lambda_{n, 1}T+a_{n, 4}\sin\lambda_{n, 1}T)\cos nx \\ =& 2\mu_{1}\bigg[\sum\limits_{n=1}^{N}Z'_{n}(T)\cos nx+\frac{f'_{2}(T)}{2\pi}x^{2}\bigg], \\ &\sum\limits_{n=1}^{N}(-a_{n, 3}\lambda_{n, 1}\sin\lambda_{n, 1}T+a_{n, 4}\lambda_{n, 1} \cos\lambda_{n, 1}T)\cos nx\\ =& 2q\mu_{2} \bigg[-\sum\limits_{n=1}^{N}nZ_{n}(T)\sin nx+\frac{f_{2}(T)}{\pi}x\bigg], \end{array}\right. $

于是

$ \left\{\begin{array}{lll} a_{n, 3}\cos\lambda_{n, 1}T+a_{n, 4}\sin\lambda_{n, 1}T=2\mu_{1}Z'_{n}(T)+\frac{4\mu_{1}(-1)^{n}f'_{2}(T)}{n^{2}\pi}, \\ -a_{n, 3}\lambda_{n, 1}\sin\lambda_{n, 1}T+a_{n, 4}\lambda_{n, 1}\cos\lambda_{n, 1}T=\frac{4q\mu_{2}[(-1)^{n}-1]f_{2}(T)}{n^{2}\pi^{2}}, \end{array}\right. $

解之得

$ \left\{\begin{array}{rl} a_{n, 3}=& 2\mu_{1}Z'_{n}(T)\cos\lambda_{n, 1}T+\frac{4\mu_{1}(-1)^{n}f'_{2}(T)\cos\lambda_{n, 1}T}{n^{2}\pi} \\ & +\frac{4q\mu_{2}[(-1)^{n+1}+1]f_{2}(T)\sin\lambda_{n, 1}T}{n^{2}\lambda_{n, 1}\pi^{2}}, \\ a_{n, 4}=& 2\mu_{1}Z'_{n}(T)\sin\lambda_{n, 1}T+\frac{4\mu_{1}(-1)^{n}f'_{2}(T)\sin\lambda_{n, 1}T}{n^{2}\pi} \\ & -\frac{4q\mu_{2}[(-1)^{n+1}+1]f_{2}(T)\cos\lambda_{n, 1}T}{n^{2}\lambda_{n, 1}\pi^{2}}. \end{array}\right. $

2 $^{{\rm o}}$ .对于(4.6)式中的(ⅱ), 根据终端条件(3.3)以及(4.4)和(4.19)-(4.20)式得

$ \left\{\begin{array}{lll} b_{n, 1}=a_{n, 1}, \\ b_{n, 2}=a_{n, 2}. \end{array}\right. $

再根据终端条件(3.3)以及(4.5)和(4.21)-(4.22)式得

$ \left\{\begin{array}{lll} b_{0, 1}\cos \sqrt{p}T+b_{0, 2}\sin \sqrt{p}T+\sum\limits_{n=1}^{N}(b_{n, 3}\cos\lambda_{n, 2}T+b_{n, 4}\sin\lambda_{n, 2}T)\cos nx\\ \ \ \ =2\mu_{1}\bigg\{Z'_{0}(T)+ \bigg[\sum\limits_{n=1}^{N}Z'_{n}(T)\cos nx+\frac{f'_{2}(T)}{2\pi}x^{2}\bigg]\bigg\}, \\ \sqrt{p}[-b_{0, 1}\sin \sqrt{p}T+b_{0, 2}\cos \sqrt{p}T]+\sum\limits_{n=1}^{N}(-b_{n, 3}\lambda_{n, 2}\sin\lambda_{n, 2}T+b_{n, 4}\lambda_{n, 2}\cos\lambda_{n, 2}T)\cos nx\\ \ \ \ =2q\mu_{2}\bigg[-\sum\limits_{n=1}^{N}nZ_{n}(T)\sin nx+\frac{f_{2}(T)}{\pi}x\bigg], \end{array}\right. $

解之得

$ \left\{\begin{array}{rl} b_{n, 3}=& 2\mu_{1}Z'_{n}(T)\cos\lambda_{n, 2}T+\frac{4\mu_{1}(-1)^{n} f'_{2}(T)\cos\lambda_{n, 2}T}{n^{2}\pi} \\ & +\frac{4q\mu_{2}[(-1)^{n+1}+1]f_{2}(T)\sin\lambda_{n, 2}T}{n^{2}\lambda_{n, 2} \pi^{2}}, \\ b_{n, 4}=& 2\mu_{1}Z'_{n}(T)\sin\lambda_{n, 2}T+\frac{4\mu_{1}(-1)^{n} f'_{2}(T)\sin\lambda_{n, 2}T}{n^{2}\pi} \\ & -\frac{4q\mu_{2}[(-1)^{n+1}+1]f_{2}(T)\cos\lambda_{n, 2}T}{n^{2} \lambda_{n, 2}\pi^{2}}, \\ b_{0, 1}=& 2\mu_{1}Z'_{0}(T)\cos \sqrt{p}T+\frac{\pi}{6}f'_{2}(T)\cos \sqrt{p}T\\ & -\frac{2q\mu_{2}}{\sqrt{p}\pi}\sum\limits_{n=1}^{N}[(-1)^{n}-1]Z_{n}(T) \sin \sqrt{p}T -\frac{f_{2}(T)}{2\sqrt{p}}\sin \sqrt{p}T, \\ b_{0, 2}=& 2\mu_{1}Z'_{0}(T)\sin \sqrt{p}T+\frac{\pi}{6}f'_{2}(T)\sin \sqrt{p}T\\ &+\frac{2q\mu_{2}}{\sqrt{p}\pi}\sum\limits_{n=1}^{N}[(-1)^{n}-1]Z_{n}(T) \cos \sqrt{p}T-\frac{f_{2}(T)}{2\sqrt{p}}\cos \sqrt{p}T. \end{array}\right. $

这里

$ Z_{0}(t)=-\frac{1}{\sqrt{p}}\int_{0}^{t}\eta(\tau)\sin \sqrt{p}\tau {\rm d}\tau\cos\sqrt{p}t+\frac{1}{\sqrt{p}}\int_{0}^{t} \eta(\tau)\cos \sqrt{p}\tau {\rm d}\tau\sin\sqrt{p}t, $

其中, $\eta(t)=\frac{p}{\pi}f_{1}(t)+\frac{q}{\pi}f_{2}(t) -\frac{\pi}{6}f''_{2}(t)-\frac{p\pi}{6}f_{2}(t)$ .

3 $^{{\rm o}}$ .对于(4.6)式中的(ⅲ), 根据终端条件(3.3)以及(4.4)和(4.19)-(4.20)式得

$ \left\{\begin{array}{rl} &\ \ \ \sum\limits_{n=1}^{N}(c_{n, 1}\cos\lambda_{n, 2}T+c_{n, 2}\sin\lambda_{n, 2}T)\sin nx\\ &= 2\mu_{1}\bigg[\sum\limits_{n=1}^{N}Y'_{n}(T)\sin nx+\frac{f'_{1}(T)}{\pi}x\bigg], \\ &\ \ \ \sum\limits_{n=1}^{N}(-c_{n, 1}\lambda_{n, 2}\sin\lambda_{n, 2}T+c_{n, 2}\lambda_{n, 2}\cos\lambda_{n, 2}T)\sin nx \\ &= 2p\mu_{2} \bigg[\sum\limits_{n=1}^{N}nY_{n}(T)\cos nx+\frac{f_{1}(T)}{\pi}\bigg], \end{array}\right. $

于是, 解之得

$ \left\{\begin{array}{rl} c_{n, 1}=& 2\mu_{1}Y'_{n}(T)\cos\lambda_{n, 2}T+\frac{4\mu_{1}(-1)^{n}f'_{1}(T)\cos\lambda_{n, 2}T}{n\pi} \\ & +\frac{4p\mu_{2}[(-1)^{n+1}+1]f_{1}(T)\sin\lambda_{n, 2}T}{n\lambda_{n, 2}\pi^{2}}, \\ c_{n, 2}=& 2\mu_{1}Y'_{n}(T)\sin\lambda_{n, 2}T+\frac{4\mu_{1}(-1)^{n}f'_{1}(T)\sin\lambda_{n, 2}T}{n\pi} \\ & -\frac{4p\mu_{2}[(-1)^{n+1}+1]f_{1}(T)\cos\lambda_{n, 2}T}{n\lambda_{n, 2}\pi^{2}}. \end{array}\right. $

再根据终端条件(3.3)以及(4.7)和(4.21)-(4.22)式得

$ \left\{\begin{array}{lll} c_{n, 3}=a_{n, 3}, \\ c_{n, 4}=a_{n, 4}. \end{array}\right. $

4 $^{{\rm o}}$ .对于(4.6)式中的(ⅳ), 同理可得

$ \left\{\begin{array}{lll} d_{n, 1}=c_{n, 1}, \quad d_{n, 3}=b_{n, 3}, \\ d_{n, 2}=c_{n, 2}, \quad d_{n, 4}=b_{n, 4}. \end{array}\right. $

对于上述1 $^{{\rm o}}$ -4 $^{{\rm o}}$ 的各种情形所确定的 $b_{0, 1}, b_{0, 2}; a_{n, j}, b_{n, j}, c_{n, j}, d_{n, j}, j=1, 2, 3, 4$ .分别代入(4.6)式相应得到 $S_{n}(t)$ $Q_{n}(t)$ 再代入(4.4)和(4.5)式得到对偶系统的最优轨线序列 $\left(u_{N}^{\ast}(x, t), \theta_{N}^{\ast}(x, t)\right)$ , 进而得到最优控制序列 $(f_{N, 1}^{\ast}(t), f_{N, 2}^{\ast}(t))$ .因此, 最优性能指标也可以近似地表示为

$ \begin{eqnarray}\label{4.23} J(f_{N, 1}^{\ast}(t), f_{N, 2}^{\ast}(t)) &=&\int_{0}^{\pi}\mu_{1}[(w_{N}^{\ast})_{t}^{2}(x, T)+(\varphi_{N}^{\ast})_{t}^{2}(x, T)]{\rm d}x\\ &&+\int_{0}^{\pi}\mu_{2}[p((w_{N}^{\ast})_{x}(x, T)-(\varphi_{N}^{\ast})(x, T))^{2}+q(\varphi_{N}^{\ast})_{x}^{2}(x, T)]{\rm d}x\\ &&+\int_{0}^{T}\mu_{3}[f_{N, 1}^{\ast2}(t)+f_{N, 2}^{\ast2}(t)]{\rm d}t. \end{eqnarray} $ (4.23)
参考文献
[1] Ammari K, Tucsnak M. Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J Cont Optim, 2000, 39(4): 1160–1181. DOI:10.1137/S0363012998349315
[2] Liu K S, Liu Z Y. Boundary stabilization of a nonhomogeneous beam with rotatory inertia at the tip. Journal of Computational and Applied Mathematics, 2000, 114: 1–10.
[3] Liu K S, Liu Z Y, Rao B P. Exponential stability of an abstract non-dissipative linear system. SIAM J Cont Optim, 2001, 40(1): 149–165. DOI:10.1137/S0363012999364930
[4] 章春国, 赵宏亮, 刘康生. 具有局部分布反馈与边界反馈耦合控制的非均质Timoshenko梁的指数镇定. 数学年刊(A辑), 2003, 24(6): 757–764.
Zhang C G, Zhao H L, Liu K S. The exponential stabilization of nonhomogeneous Timoshenko beam with one locally distributed control and one boundary control. Chinese Ann Math Ser A, 2003, 24(6): 757–764.
[5] Zhang C G. Boundary feedback stabilization of the undamped Timoshenko beam with both ends free. J Math Anal Appl, 2007, 326: 488–499. DOI:10.1016/j.jmaa.2006.01.020
[6] Zhang C G, Hu H X. Exact controllability of a Timoshenko beam with dynamical boundary. J Math Kyoto Univ, 2007, 47(3): 643–655. DOI:10.1215/kjm/1250281029
[7] Sadek I S, Kucuk I I, Sloss J M, Zeini E E, Adali S. Optimal boundary control of dynamics responses of piezo actuating micro-beams. Applied Mathematical Modelling, 2009, 33(8): 3343–3353. DOI:10.1016/j.apm.2008.11.009
[8] Ozkan Ozer A, Scott W H. Exact controllability of a Rayleigh beam with a single boundary control. Math Control Signals Syst, 2011, 23: 199–222. DOI:10.1007/s00498-011-0069-4
[9] 章春国. 具有局部记忆阻尼的非均质Timoshenko梁的稳定性. 数学物理学报, 2012, 32A(1): 186–200.
Zhang C G. Stability for the nonhomogeneous Timoshenko beam with local memory damping. Acta Math Sci, 2012, 32A(1): 186–200.
[10] Sadek I S, Sloss J M, Bruch J C J, Adali S. Optimal control of a Timoshenko beam by distributed force. J Optim Theory Appl, 1986, 50(3): 451–461. DOI:10.1007/BF00938631
[11] Zelikin M I, Manita L A. Optimal control for a Timoshenko beam. C R Mecanique, 2006, 334: 292–297. DOI:10.1016/j.crme.2006.03.011
[12] Zhang C G, He Z R. Optimality conditions for a Timoshenko beam equation with periodic constraint. Z Angew Math Phys, 2014, 65(2): 315–324. DOI:10.1007/s00033-013-0333-1
[13] Adams R A. Sobolev Spaces. New York: Acadamic Press, 1975.
[14] Pazy A. Semigroups of Linear Operators and Applications to Partical Differential Euqations. New York: Springer-Verlag, 1983
[15] Liu K S. Locally distributed control and damping for the conservative systems. SIAM J Cont Optim, 1997, 35(5): 1574–1590. DOI:10.1137/S0363012995284928