本文主要研究如下具非线性记忆项的高阶阻尼双曲系统的爆破行为
其中$m$, $N\in{\Bbb Z}^+$, $\gamma$, $\delta\in \left(0, 1\right)$, $p$, $q\in \left(1, +\infty\right)$, $\Gamma$表示Euler-Gamma函数, $\left(u_i, v_i\right)\in W^{1-i, 2m}\left( {\Bbb R}^N\right)\times W^{1-i, 2m}\left( {\Bbb R}^N\right)$, 且$\mbox{supp}\left(u_i, v_i\right)\subset B_\rho\equiv \left\{x\in {\Bbb R}^N: \left|x\right|<\rho\right\}$, 其中$\rho$为一合适的正常数, $i=0, 1$.
近些年来, 很多作者对具阻尼项的双曲方程整体解的存在性与非存在性进行了研究. Li和Zhou[1], Todorova和Yordanov[2], Zhang[3]研究了如下初值问题解的整体存在性与有限时刻爆破
得到了临界指数$p_f=1 + \frac{2}{N}$.
Fino[4]研究了问题
其中$\gamma\in\left(0, 1\right)$, $p\in\left(1, +\infty\right)$.当空间维数$N\in\left\{1, 2, 3\right\}$时, Fino讨论了小初值解的整体存在性和渐近行为; 对任意的$N\in {\Bbb Z}^+$, Fino得到了解的爆破结果. D'Abbicco[5]在条件$N\in\left\{1, 2, 3, 4, 5\right\}$下研究了问题(1.3)整体解的存在性与非存在性.
许勇强[6]和Berbiche[7]分别在条件$m=1$下考察了问题(1.1), 给出了解在有限时刻发生爆破的条件; 同时, 文献[6]中, 作者获得了一维情况下小初值解的整体存在性并给出了解的渐近行为, 而文献[7]中, 作者给出了$N\in\left\{1, 2, 3\right\}$时解的整体存在性结果.
其他的一些相关工作可参考文献[8-12].受上述工作的启发, 我们讨论问题(1.1)解的爆破行为.本文结构如下:第二节, 给出Riemann-Liouville分数积分和分数阶导数的一些定义和性质, 并给出问题(1.1)弱解的定义; 第三节, 类似于文献[4, 6, 10], 利用试验函数方法, 给出问题(1.1)弱解的一个爆破结果.
本节我们给出Riemann-Liouville分数积分和分数阶导数的一些定义和性质, 相关细节可参考文献[13-14].
定义2.1[14] 给定$\alpha\in \left(0, 1\right)$, $f\in L^r\left(0, T\right)$, $1\leq r\leq \infty$, 则$f$的Riemann-Liouville分数积分$J^{1-\alpha}_{0|t}f\left(t\right)$定义为
定义2.2[14] 给定$f\in AC\left[0, T\right]$, 其$\alpha\in \left(0, 1\right)$阶Riemann-Liouville型左边导数$D^\alpha_{0|t}f\left(t\right)$和右边导数$D^\alpha_{t|T}f\left(t\right)$分别定义为
引理2.1[14] 给定$f$, $g\in C\left[0, T\right]$, $\alpha\in \left(0, 1\right)$, 对任意的$t\in \left[0, T\right]$, $D^\alpha_{0|t}f$及$D^\alpha_{t|T}g$存在且连续, 则
引理2.2[13] (1) 对任意的$1\leq r\leq \infty$, 有
在$\left[0, T\right]$上几乎处处成立;
(2) 定义$AC^{n+1}\left[0, T\right]=\left\{g: \left[0, T\right]\rightarrow {\Bbb R}, \partial_t^n g\in AC\left[0, T\right]\right\}$, 其中$n$为非负整数.任取$g\in AC^{n+1}\left[0, T\right]$, 则
给定
其中$t\geq 0$, $T>0$, $l\gg1$, 则对任意的$\alpha\in \left(0, 1\right)$, 有
及
由定义2.1, 我们可将问题(1.1)中的方程重写成如下形式
本节的最后, 我们给出问题(1.1)弱解的定义.
定义2.3 给定$T>0$及初值$( u_i, v_i)\in (L_{\rm loc}^1({\Bbb R}^N))^2$ $(i=0, 1)$.若$( u, v )\in L_{\rm loc}^q ({\Bbb R}^N\times [0, T))\times L_{\rm loc}^p({\Bbb R}^N\times [0, T))$满足
则称$\left( u, v \right)$为问题(1.1)的一个弱解, 其中试验函数$\varphi$, $\psi\in C^{2, \infty}_0\left([0, T)\times {\Bbb R}^N\right)$满足
定理3.1 假设
则当
或
时, 问题(1.1)的弱解会在有限时刻爆破.
证 反证.假设$\left(u\left(x, t\right), v\left(x, t\right)\right)$为问题(1.1)的一非平凡整体弱解.令$\Phi\left(s\right)\in C_0^{\infty}\left({\Bbb R}^1_+\right)$满足
令
其中$B>0$为待定常数, $T$, $l_1$, $l_2\gg1$.
再令$\sigma\left(x, t\right)=\phi_1\left(x\right)\phi_2\left(t\right)$, 在定义2.3中取试验函数
同时利用(2.1), (2.3), (2.4)和(2.5)式, 得
其中$C$为不依赖于$T$的常数.注意到
则由式(2.2), 可得估计
由Hölder不等式, 有
联立(3.3), (3.5)和(3.6)式, 得
类似地,我们有
这里
联立(3.7)和(3.8)式, 得
接下来, 我们对$K_1$, $K_2$, $K_3$, $K_4$进行估计.为此, 作尺度变换
则
注意到$T\gg1$, 则进一步有
类似地, 有
另一方面, 可对$K_2$进行如下估计
类似地, 对$K_4$, 有
联立(3.11)和(3.13)式, 得
联立(3.12)和(3.14)式, 得
至此, (3.9), (3.10), (3.15)和(3.16)式蕴含
其中
接下来, 我们将分3种情形来完成定理的证明.在情形1和情形2中, 不妨假定
情形1 $\frac{N\left(pq-1\right)}{2m}<pq\left(1-\gamma\right)+p\left(2-\delta\right)+1$.经计算, 此时有$\theta_1<0$.取$B=1$, 在式(3.17)两边关于$T\rightarrow \infty$取极限, 得
由Lebesgue控制收敛定理, 有
从而
结合(3.8)和(3.19)式, 可推导出$u\equiv v\equiv 0$, 即$\left(u\left(x, t\right), v\left(x, t\right)\right)$为问题(1.1)的平凡解.矛盾.
情形2 $\frac{N\left(pq-1\right)}{2m}=pq\left(1-\gamma\right)+p\left(2-\delta\right)+1$.此时有$\theta_1=0$.取$B$足够大, 且限定$1 <<B<T$, 使得$T\rightarrow \infty$时$B\nrightarrow \infty$.接下来, 在$\Omega\times \left[0, T\right]$上重新估计$K_2$和$K_4$, 其中
类似之前的步骤(亦可见文献[4]), 有
进而, $\theta_1=0$蕴含
令$T\rightarrow \infty$, 则由Lebesgue控制收敛定理, 有
再令$B\rightarrow \infty$, 得$v\equiv 0$.进而可推导出$u\equiv v\equiv 0$, 即$\left(u\left(x, t\right), v\left(x, t\right)\right)$为问题(1.1)的平凡解.矛盾.
情形3 $p\leq \frac{1}{\delta}$且$q\leq \frac{1}{\gamma}$.类似于情形1和情形2的讨论, 可以证明问题(1.1)的弱解会在有限时刻爆破.在此, 不再赘述.