数学物理学报  2018, Vol. 38 Issue (2): 276-283   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
余纯
万优艳
含超线性项的广义Choquard-Pekar方程基态解的存在性
余纯, 万优艳     
江汉大学数学系 武汉 430056
摘要:该文研究一类含超线性项的广义Choquard-Pekar方程.通过集中紧致原理证明了Nehari流形上极小值点是可达的,得到了基态解的存在性.
关键词Choquard-Pekar方程    Nehari流形    集中紧致原理    基态解    
The Existence of Ground State to the Generalized Choquard-Pekar Equation with Superlinear Nonlinearities
Yu Chun, Wan Youyan     
The Department of Mathematics of Jianghan University, Wuhan 430056
Abstract: In this paper the generalized Choquard-Pekar equation with superlinear nonlinearities was studied. By the concentration compactness principle, the minimal point on the Nehari manifold was achieved, then the existence of the ground state was obtained.
Key words: Choquard-Pekar equations     Nehari manifold     Concentration compactness principle     Ground state    
1 引言

本文主要研究如下广义Choquard-Pekar方程基态解的存在性

$ \begin{equation} -\Delta u+u+\mu\int_{{\Bbb R}^N}\frac {u^2(y){\rm d}y}{|x-y|^{\lambda}} u(x)=f(u), \ \ {\rm in}\ {\Bbb R}^N, \end{equation} $ (0.1)

其中$N\geq 3, \mu=1, 0 < \lambda < \min (4, N), f(u)=|u|^{p-1}u, 3 < p < \frac{N+2}{N-2}$.

$N=3, \mu=-1, \lambda=1, f(u)=0$时, (1.1)式是由Pekar[1]提出来的Choquard-Pekar方程, 它是用来描述量子理论中一个极化子在静止状态时的模型(也可参见文献[2]).对Choquard-Pekar方程早期的研究工作是由Lieb[3]和Lions[4]完成的, 他们证明了非平凡解的存在性.目前, 已有一系列关于Choquard-Pekar方程的研究结果[5-13].当$N\geq 3, 0 < \lambda < \min(4, N), 0 < 2h < \lambda, 0\leq h < 2, V(x)\geq V_0>0$, 且$\lim\limits_{|x|+|y|\rightarrow\infty} {\mu}(x, y)\leq 0$时, 曹道珉[14]利用集中紧致原理证明得到了下面这类广义Choquard-Pekar方程解的存在性

$ -\Delta u+V(x)u+\int_{{\Bbb R}^N}\frac {\mu(x, y)u^2(y){\rm d}y}{|y|^h|x-y|^{\lambda-2h}} \frac{u(x)}{|x|^h}=0, \ \ {\rm in}\ {\Bbb R}^N. $

受文献[14]的启发, 本文主要研究含超线性项且非局部项前的系数$\mu$为大于零的常数(本文为简单起见考虑$\mu=1>0$)的广义Choquard-Pekar方程(1.1)基态解的存在性.

本文运用Nehari流形和集中紧致原理证明了如下结论.

定理1.1  当$3 < p < \frac{N+2}{N-2}$时, 方程(1.1)存在一个基态解.

本文结构安排如下:第二节, 给出文章的框架和估计中要用到的重要不等式, 并且讨论Nehari流形上临界值的性质; 第三节, 用集中紧致原理证明Nehari流形上极小值点是可达的, 从而证明定理1.1成立.

2 预备知识

$E:=H^1({\Bbb R}^N)$为赋以范数$\|u\|=(\int_{{\Bbb R}^N}(|\nabla u|^2+ |u|^2){\rm d}x)^{\frac{1}{2}}$的索伯列夫空间.方程(1.1)所对应的能量泛函为

$ \begin{eqnarray*} I(u)=\frac{1}{2}\int_{{\Bbb R}^N}(|\nabla u|^2+|u|^2){\rm d}x+\frac{1}{4} \int_{{\Bbb R}^N}\int_{{\Bbb R}^N} \frac{u^2(x)u^2(y)}{|x-y|^{\lambda}}{\rm d}x{\rm d}y- \frac{1}{p+1} \int_{{\Bbb R}^N} |u|^{p+1}{\rm d}x. \end{eqnarray*} $

注意到$I\in C^1(E, {\Bbb R})$, 且$\forall\eta\in C^\infty_0({\Bbb R}^N)$, 有

$ \begin{eqnarray*} \langle I'(u), \eta\rangle& =&\int_{{\Bbb R}^N} (\nabla u\cdot \nabla\eta+u\eta){\rm d}x+ \int_{{\Bbb R}^N}\int_{{\Bbb R}^N} \frac{u^2(x)u(y)\eta(y)}{|x-y|^{\lambda}}{\rm d}x{\rm d}y %\\&& -\int_{{\Bbb R}^N}|u|^{p-1}u\eta {\rm d}x. \end{eqnarray*} $

特别地, 我们有

$ \begin{eqnarray*} \langle I'(u), u\rangle& =&\int_{{\Bbb R}^N} (|\nabla u|^2+|u|^2){\rm d}x+ \int_{{\Bbb R}^N}\int_{{\Bbb R}^N} \frac{u^2(x)u^2(y)}{|x-y|^{\lambda}}{\rm d}x{\rm d}y -\int_{{\Bbb R}^N}|u|^{p+1}{\rm d}x. \end{eqnarray*} $

在以下的证明中, 我们要用到下面的不等式.

引理2.1[15-16] (Hardy-Littlewood不等式)如果$u\in L^r({\Bbb R}^N), v\in L^s({\Bbb R}^N), $

$ \begin{eqnarray*} \bigg|\int_{{\Bbb R}^N}\int_{{\Bbb R}^N} \frac{u(x)v(y){\rm d}x{\rm d}y}{|x|^h|y|^l|x-y|^{\lambda-h-l}}\bigg| \leq C|u|_{L^r({\Bbb R}^N)}|v|_{L^s({\Bbb R}^N)}, \end{eqnarray*} $

其中$\lambda, s, r, h, l$满足如下关系式

$ 0<\lambda<N, \alpha+\beta\geq 0, 1<r, \, s <\infty, $
$ 1-\frac{1}{r}-\frac{\lambda}{N}<\frac{h}{N}<1-\frac{1}{r}, \frac{1}{r}+\frac{1}{s}+\frac{\lambda+h+l}{N}=2. $

$\Sigma =\{u\in E\backslash \{0\}:\langle I'(u), u\rangle =0\}.$我们有下面的结论.

引理2.2  当$p>3$时, $\Sigma$是光滑流形.

  令$\varphi(u)=\langle I'(u), u\rangle, \forall u\in \Sigma$.则

$ \begin{eqnarray*} \langle \phi'(u), u\rangle& =&2 \int_{{\Bbb R}^N} (|\nabla u|^2+|u|^2){\rm d}x+4 \int_{{\Bbb R}^N} \int_{{\Bbb R}^N} \frac{u^2(x)u^2(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}} \\&& -(p+1)\int_{{\Bbb R}^N} |u|^{p+1}{\rm d}x. \end{eqnarray*} $

因为$u\in \Sigma$$p>3$, 所以

$ \begin{eqnarray*} \langle \varphi'(u), u\rangle =(1-p) \int_{{\Bbb R}^N} (|\nabla u|^2+|u|^2){\rm d}x+(3-p) \int_{{\Bbb R}^N} \int_{{\Bbb R}^N} \frac{u^2(x)u^2(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}} <0. \end{eqnarray*} $

由隐函数存在定理可得命题成立.

定义

$ C=\inf\limits_{u\in \Sigma}I(u), C^*=\inf\limits_{\gamma\in \Gamma}\max\limits_{ t\in [0, 1]}I(\gamma(t)), C^{**}=\inf\limits_{u\in E\backslash \{0\}}\max\limits_{t\geq 0}I(tu), $

其中$\Gamma =\{\gamma\in C([0, 1], {\mathbb E}): \gamma(0)=0, I(\gamma(1)) < 0\}$.

引理2.3  当$p>3$时, $C=C^*=C^{**}$.

  首先, 我们证明$C=C^{**}$.事实上, 我们只要能够证明$ \forall u\in E\backslash \{0\}$, 射线$R_t=\{tu, t\geq 0\}$与流形$\Sigma$仅相交于$I(tu), t\geq 0$取得唯一最大值的点$\theta u(\theta>0)$即可.假设

$ g(t)=t^{p-1}D-t^2B-A, \ \ t\in [0, +\infty), $

其中

$ A=\|u\|^2, B=\int_{{\Bbb R}^N} \int_{{\Bbb R}^N} \frac{u^2(x)u^2(y)}{|x-y|^{\lambda}}{\rm d}x{\rm d}y, D=|u|^{p+1}_{p+1}. $

我们可得

$ \left\{\begin{array}{ll}g''(t)<0, &t<t_1, \\ g'(t)>0, &t>t_1, \end{array}\right. $

其中$t_1=\sqrt[^{^{p-3}}]{\frac{2B}{(p-1)(p-2)D}}.$此外, 存在$t_2=0, t_3=\sqrt[^{^{p-3}}]{\frac{2B}{(p-1)D}}.$使得$g'(t_i)=0, i=2, 3, $$t\geq t_3$$g(t)$严格单调递增, $t\leq t_3$$ g(t)$严格单调递减.又因为$g(0)=-A < 0$, 所以射线$R_t$$\Sigma$仅相交于$I(tu), t\geq 0$取得唯一最大值的点$\theta u (\theta>0).$于是$C=C^{**}$.

其次, 我们证明$C^*=C^{**}$.显然有$C^{**}\geq C^*$.我们只需证明$C^{**}\leq C^*$. $\forall u\in E\backslash \{0\}$, 令$\bar{t}$为唯一的正实数使得$\bar{t}u\in \Sigma$.于是

$ C^{**}=\inf\limits_{u\in K}I(u), $

其中$K=\{u=\bar{t}u:u\in E, u\neq 0, \bar{t} < \infty\}$.令$\gamma\in \Gamma$是一条道路.如果$\forall \gamma\in \Gamma, \gamma\cap K\neq \phi$, 那么结论成立.如果存在$\gamma\in\Gamma$使得$\gamma(t)\not\in K, \forall t\in [0, 1]$, 那么我们有

$ \begin{eqnarray*} \int_{{\Bbb R}^N} (|\nabla \gamma|^2+\gamma^2){\rm d}x+ \int_{{\Bbb R}^N} \int_{{\Bbb R}^N} \frac{\gamma^2(x)\gamma^2(y)}{|x-y|^{\lambda}}{\rm d}x{\rm d}y> \int_{{\Bbb R}^N} |\gamma|^{p+1}{\rm d}x. \end{eqnarray*} $

于是,由$p>3$, 可得

$ \begin{eqnarray*} I(\gamma)&=&\frac{1}{2} \int_{{\Bbb R}^N} (|\nabla \gamma|^2+\gamma^2){\rm d}x+ \frac{1}{4} \int_{{\Bbb R}^N}\int_{{\Bbb R}^N}\frac{\gamma^2(x)\gamma^2(y)}{|x-y|^{\lambda}}{\rm d}x{\rm d}y -\frac{1}{p+1} \int_{{\Bbb R}^N} |\gamma|^{p+1}{\rm d}x\\ &>&\Big(\frac{1}{2}-\frac{1}{p+1}\Big) \int_{{\Bbb R}^N} (|\nabla \gamma|^2+\gamma^2){\rm d}x+ \Big(\frac{1}{4}-\frac{1}{p+1}\Big) \int_{{\Bbb R}^N}\int_{{\Bbb R}^N}\frac{\gamma^2(x)\gamma^2(y)} {|x-y|^{\lambda}}{\rm d}x{\rm d}y \end{eqnarray*} $

这与$I(\gamma(1)) < 0$矛盾.因此$C^*=C^{**}$.综上所述, 结论成立.

3 定理1.1的证明

本节中, 我们将运用集中紧致原理[17-18]来证明在Nehari流形上极小值点是可达的, 从而基态解存在.定义

$ \begin{eqnarray*} \Phi(u)&=&\Big(\frac{1}{2}-\frac{1}{p+1}\Big) \int_{{\Bbb R}^N} (|\nabla u|^2+u^2){\rm d}x+ \Big(\frac{1}{4}-\frac{1}{p+1}\Big) \int_{{\Bbb R}^N}\int_{{\Bbb R}^N}\frac{u^2(x)u^2(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}} \geq 0. \end{eqnarray*} $

选取$\{u_n\}\subset \Sigma$使得$\lim\limits_{n\rightarrow\infty}I(u_n)=C.$因为$u_n\in \Sigma, $所以$\lim\limits_{n\rightarrow\infty}\Phi (u_n)=C.$又由引理2.1, 可得

$ \bigg|\int_{{\Bbb R}^N}\int_{{\Bbb R}^N} \frac{u_n^2(x)u_n^2(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}}\bigg| \leq C|u_n|^4_{L^{2r({\Bbb R}^N)}}, $

其中$r=\frac{2N}{2N-\lambda}$.再由Sobolev嵌入不等式,$\{u_n\}$$H^1({\Bbb R}^N)$中有界.

定义如下测度

$ \begin{eqnarray*} \rho_n(\Omega)=\Big(\frac{1}{2}-\frac{1}{p+1}\Big) \int_{\Omega} (|\nabla u_n|^2+|u_n|^2){\rm d}x+ \Big(\frac{1}{4}-\frac{1}{p+1}\Big) \int_{\Omega}\int_{\Omega}\frac{u^2_n(x)u^2_n(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}}. \end{eqnarray*} $

由Lions[17]的集中紧致原理, 有下面三种可能性.

(ⅰ) 消失:$\forall R>0, \lim\limits_{n\rightarrow\infty}\sup\limits_{\xi\in {\Bbb R}^N} \int_{B_R(\xi)}{\rm d}\rho_n=0;$

(ⅱ)二分:存在$\bar{C}\in (0, C)$, 两个序列$\{\xi_n\}$$\{R_n\}$, 其中$R_n\rightarrow+\infty, n\rightarrow\infty$, 存在两个非负测度$\rho^1_n$$\rho^2_n$, 使得

$ 0\leq \rho^1_n+\rho^2_n\leq \rho_n, \rho^1_n({\Bbb R}^N)\rightarrow \bar{C}, \rho^2_n({\Bbb R}^N)\rightarrow C-\bar{C}, $
$ {\rm supp}( \rho^1_n)\subset B_{R_n}(\xi_n), {\rm supp}( \rho^2_n)\subset {\Bbb R}^N\backslash B_{2R_n}(\xi_n); $

(ⅲ)紧性:存在$\{\xi_n\}\subset {\Bbb R}^N$满足下面的性质:$\forall \delta>0, $存在${\cal R}=R(\delta)$, 使得

$ \int_{B_R(\xi_n)}{\rm d}\rho_n\geq C-\delta. $

引理3.1  对于测度$\rho_n$, 消失和二分不可能成立.

   (ⅰ) 首先, 我们证明消失不可能成立.

假设$\rho_n$是消失的.由文献[18]中的引理1.1, 我们有在$L^s({\Bbb R}^N)\ (2 < S < 2^*)$$u_n\rightarrow 0, n\rightarrow\infty$.由于$\{u_n\}\subset E$, 我们有

$ \begin{equation} 0\leq I(u_n)= -\frac{1}{4} \int_{{\Bbb R}^N}\int_{{\Bbb R}^N}\frac{u^2_n(x)u^2_n(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}} +\Big(\frac{1}{2}-\frac{1}{p+1}\Big) \int_{{\Bbb R}^N} |u_n|^{p+1}{\rm d}x. \end{equation} $ (3.1)

由引理2.1, 我们可得

$ \begin{equation} \bigg|\int_{{\Bbb R}^N}\int_{{\Bbb R}^N} \frac{u_n^2(x)u_n^2(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}}\bigg| \leq C|u_n|^4_{L^{2r({\Bbb R}^N)}}\rightarrow0, n\rightarrow\infty, \end{equation} $ (3.2)

其中$r=\frac{2N}{2N-\lambda}$.

又因为$ \int_{{\Bbb R}^N} |u_n|^{p+1}{\rm d}x \rightarrow0, ~n\rightarrow\infty, $由(3.1)和(3.2)式, 可得

$ 0\leq I(u_n)\rightarrow0, n\rightarrow\infty. $

这与$ I(u_n)\rightarrow C>0, ~n\rightarrow\infty$矛盾.所以$\rho_n$不可能消失.

(ⅱ)其次, 我们证明二分不可能成立.

我们选择一个截断函数$\psi_n\in C^1({\Bbb R}^N)$满足

$ \left\{\begin{array}{ll} \psi_n\equiv 1, &x\in B_{R_n}(\xi_n), \\ \psi_n\equiv 0, &x\in {\Bbb R}^N\backslash B_{2R_n}(\xi_n), \\ 0\leq \psi_n\leq 1, &x\in B_{2R_n(\xi_n)}\backslash B_{R_n}(\xi_n), \end{array}\right. $

$|\nabla \psi_n|\leq \frac{2}{R_n}$.令$v_n:=\psi_nu_n, w_n:=(1-\psi_n)u_n$.我们有

$ \liminf\limits_{n\rightarrow\infty}I(v_n)\geq\bar{C}, \liminf\limits_{n\rightarrow\infty}I(w_n)\geq C-\bar{C}. $

$\Omega_n:=B_{2R_n}(\xi_n)\backslash B_{R_n}(\xi_n)$.我们可得

$ \rho_n(\Omega_n)\rightarrow 0, n\rightarrow\infty. $

也就是

$ \begin{eqnarray} \int_{\Omega_n} (|\nabla u_n|^2+u_n^2){\rm d}x\rightarrow 0, n\rightarrow\infty, \end{eqnarray} $ (3.3)
$ \begin{eqnarray} \int_{\Omega_n} \int_{{\Bbb R}^N} \frac{u^2_n(x)u^2_n(y){\rm d}x{\rm d}y} {|x-y|^{\lambda}}\rightarrow 0, n\rightarrow\infty. \end{eqnarray} $ (3.4)

于是

$ \int_{\Omega_n} (|\nabla v_n|^2+v_n^2){\rm d}x\rightarrow 0, n\rightarrow\infty, $
$ \int_{\Omega_n} (|\nabla w_n|^2+w_n^2){\rm d}x\rightarrow 0, n\rightarrow\infty. $

从而

$ \begin{eqnarray} \int_{{\Bbb R}^N} (|\nabla u_n|^2+u_n^2){\rm d}x= \int_{{\Bbb R}^N} (|\nabla v_n|^2+v_n^2){\rm d}x+ \int_{{\Bbb R}^N} (|\nabla w_n|^2+w_n^2){\rm d}x+o_n(1), \end{eqnarray} $ (3.5)
$ \begin{eqnarray} \int_{{\Bbb R}^N} |u_n|^{p+1}{\rm d}x= \int_{{\Bbb R}^N} |v_n|^{p+1}{\rm d}x +\int_{{\Bbb R}^N} |w_n|^{p+1}{\rm d}x+o_n(1). \end{eqnarray} $ (3.6)

根据(3.4)式, 我们有

$ \begin{eqnarray} \int_{{\Bbb R}^N}\int_{{\Bbb R}^N}\frac{u^2_n(x)u^2_n(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}} &=&\int_{{\Bbb R}^N}\int_{{\Bbb R}^N}\frac{v^2_n(x)v^2_n(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}} +\int_{{\Bbb R}^N}\int_{{\Bbb R}^N}\frac{w^2_n(x)w^2_n(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}} \nonumber\\ &&+2\int_{B_{R_n}}\int_{B^c_{2R_n}} \frac{u^2_n(x)u^2_n(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}}+o_n(1) \nonumber\\ &\geq& \int_{{\Bbb R}^N}\int_{{\Bbb R}^N}\frac{v^2_n(x)v^2_n(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}} +\int_{{\Bbb R}^N}\int_{{\Bbb R}^N}\frac{w^2_n(x)w^2_n(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}}. \end{eqnarray} $ (3.7)

由(3.5)-(3.7)式, 我们得

$ I(u_n)\geq I(v_n)+I(w_n)+o_n(1). $

因此

$ C=\lim\limits_{n\rightarrow\infty}I(u_n)\geq \liminf\limits_{n\rightarrow\infty} I(v_n)+\liminf\limits_{n\rightarrow\infty} I(w_n) \geq\bar{C}+(C-\bar{C})=C. $

于是

$ \begin{eqnarray} \lim\limits_{n\rightarrow\infty}I(v_n)=\bar{C}, \lim\limits_{n\rightarrow\infty}I(w_n)=C-\bar{C}. \end{eqnarray} $ (3.8)

因为$u_n\in \Sigma, $又由(3.5)-(3.7)式, 我们可得

$ \begin{eqnarray} 0=\varphi(u_n)=\langle I'(u_n), u_n\rangle \geq \varphi(v_n)+\varphi(w_n)+o_n(1). \end{eqnarray} $ (3.9)

由引理2.3, $\forall n\geq 1$, 存在$\theta_n>0$使得$\theta_nv_n\in \Sigma$, 于是

$ \begin{eqnarray} \theta^2_n\int_{{\Bbb R}^N} (|\nabla v_n|^2+v_n^2){\rm d}x+ \theta^4_n\int_{{\Bbb R}^N} \int_{{\Bbb R}^N} \frac{v^2_n(x)v^2_n(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}} =\theta^{p+1}_n\int_{{\Bbb R}^N} | v_n|^{p+1}{\rm d}x. \end{eqnarray} $ (3.10)

下面分三种情形讨论.

情形1   存在$\{v_n\}$的子列, 仍记作$\{v_n\}$, 使得$\varphi(v_n)\leq 0$.

由(3.10)式, 我们有

$ \begin{eqnarray} \varphi(v_n)=(1-\theta^{1-p}_n)\int_{{\Bbb R}^N} (|\nabla v_n|^2+v^2_n){\rm d}x+ (1-\theta^{3-p}_n)\int_{{\Bbb R}^N} \int_{{\Bbb R}^N} \frac{v^2_n(x)v^2_n(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}}. \end{eqnarray} $ (3.11)

由于$p>3, \theta_n\leq 1$.于是, $\forall n\geq 1$, 因为$\theta_nv_n\in \Sigma$, 所以我们有

$ C\leq I(\theta_nv_n)=\Phi(\theta_nv_n)\leq \Phi(v_n)\rightarrow \bar{C}<C, n\rightarrow\infty. $

矛盾.

情形2   存在$\{w_n\}$的子列, 仍记作$\{w_n\}$, 使得$\varphi(w_n)\leq 0$.与情形1类似的讨论, 我们也可得出矛盾.

情形3  存在$\{v_n\}$$\{w_n\}$的子列, 仍分别记作$\{v_n\}$$\{w_n\}$, 使得$\varphi(v_n)> 0$$\varphi(w_n)> 0$.由(3.9)式, 我们有$\varphi(v_n)=o_n(1) $$\varphi(w_n)=o_n(1) $.如果$\theta_n\leq 1+o_n(1) $, 我们分下面三种情况讨论

(a) 当$\limsup\limits_{n\rightarrow \infty} \theta_n>1$时, 由(3.11)式可得当$n$较大时$\|v_n\|=0$.这与(3.8)式和$\bar{C}>0$矛盾;

(b) 当$\limsup\limits_{n\rightarrow \infty} \theta_n < 1$时, 与情形1类似, 我们可以得到矛盾;

(c) 当$\limsup\limits_{n\rightarrow \infty} \theta_n=1$时, 如果存在子列使得每个元素都严格大于$1$, 则类似于(a).如果存在子列使得每个元素都严格小于$1$, 则类似于(b).如果$\theta_n\equiv 1$, 则$v_n\in \Sigma$.所以$I(v_n)= \Phi(v_n)\rightarrow\bar{C} < C$.这与$C$的定义矛盾.

于是$ \lim\limits_{n\rightarrow\infty}\theta_n=\theta_0>1$.从而

$ \begin{eqnarray*} o_n(1)&=&\varphi(v_n)\\ &=&(1-\theta^{1-p}_n)\int_{{\Bbb R}^N} (|\nabla v_n|^2+v^2_n){\rm d}x+ (1-\theta^{3-p}_n)\int_{{\Bbb R}^N} \int_{{\Bbb R}^N} \frac{v^2_n(x)v^2_n(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}}. \end{eqnarray*} $

因此, 在$H^1({\Bbb R}^N)$$v_n\rightarrow 0, n\rightarrow\infty$.这与(3.8)式矛盾.

综上所述, 二分不可能发生.

定理1.1的证明  由引理3.1可得紧性成立.也就是, 存在$\{\xi_n\}\subset {\Bbb R}^N$满足下面的性质:$\forall \delta >0, $存在$R=R(\delta)$, 使得

$ \begin{equation} \int_{B_R(\xi_n)}{\rm d}\rho_n\geq C-\delta. \end{equation} $ (3.12)

定义$\bar{u}_n(\cdot):=u_n(\cdot -\xi_n)\in H^1({\Bbb R}^N)$.由于$u_n\in \Sigma$, 由积分对平移的不变性, 我们有$\bar{u}_n\in \Sigma$$\lim\limits_{n\rightarrow \infty}I(\bar u_n)=C$.根据(3.12)式, 我们可得:$\forall \delta>0$, 存在$R(\delta)>0$, 使得对$\forall n\geq 1$, 有

$ \begin{equation} \|\bar{u}\|_{H^1(B^c_R)}<\delta. \end{equation} $ (3.13)

因为$\{u_n\}$$H^1({\Bbb R}^N)$中有界, 所以$\{\bar{u}_n\}$$H^1({\Bbb R}^N)$中也有界.于是存在$u\in H^1({\Bbb R}^N)$, 使得当$n\rightarrow\infty$时, 有

$ \begin{equation} \mbox{在$ H^1({\Bbb R}^N)$中, }\ \bar{u}_n\rightharpoonup u, \end{equation} $ (3.14)
$ \begin{equation} \mbox{在$ L^s_{loc}({\Bbb R}^N)$中, }\ \bar{u}_n\rightarrow u, \ \forall 2\leq s< \frac{2N}{N-2}, \end{equation} $ (3.15)
$ \begin{equation} \mbox{在${\Bbb R}^N$中, }\ \bar{u}_n\mathop{\longrightarrow}\limits^{\rm a.e.} u. \end{equation} $ (3.16)

根据(3.13)-(3.15)式, 取$S\in [2, \frac{2N}{N-2}), \forall\delta>0$, 存在$R>0$使得对充分大的$n$, 由Sobolev嵌入定理, 有

$ \begin{eqnarray*} \|\bar{u}_n-u\|_{L^s({\Bbb R}^N)}&\leq & \|\bar{u}_n-u\|_{L^s(B_R)}+\|\bar{u}_n-u\|_{L^s(B_R^c)}\\ &\leq& \delta +c(\|\bar{u}_n\|_{H^1(B_R^c)}+ \|u\|_{H^1(B_R^c)})\\ &\leq &(1+2c)\delta. \end{eqnarray*} $

因此, 当$s\in [2, \frac{2N}{N-2})$时, 在$L^s({\Bbb R}^N)$中, 有

$ \begin{eqnarray} \bar{u}_n\rightarrow u, u\rightarrow\infty. \end{eqnarray} $ (3.17)

于是, 我们有

$ \begin{eqnarray} \lim\limits_{n\rightarrow\infty} \int_{{\Bbb R}^N}\int_{{\Bbb R}^N}\frac{\bar{u}^2_n(x)\bar{u}^2_n(y){\rm d}x{\rm d}y} {|x-y|^{\lambda}} =\int_{{\Bbb R}^N}\int_{{\Bbb R}^N}\frac{u^2(x)u^2(y){\rm d}x{\rm d}y}{|x-y|^{\lambda}}. \end{eqnarray} $ (3.18)

由(3.14)式, 得$\liminf\limits_{n\rightarrow \infty} \|\bar{u}_n\|\geq \|u\|$.如果$\liminf\limits_{n\rightarrow \infty} \|\bar{u}_n\| > \|u\|$, 则存在$\theta\in (0, 1)$使得$\theta u\in \Sigma$.于是

$ \begin{eqnarray*} C\leq I(\theta u)=\Phi(\theta u)<\Phi(u)\leq \liminf\limits_{n\rightarrow \infty}\Phi(\bar{u}_n)\leq C, \end{eqnarray*} $

矛盾.故$\liminf\limits_{n\rightarrow \infty} \|\bar{u}_n\| = \|u\|$.从而存在子列(仍记作$\bar{u}_n$)使得

$ \begin{eqnarray} \|\bar{u}_n\|\rightarrow\|u\|, n\rightarrow\infty. \end{eqnarray} $ (3.19)

因此在$H^1({\Bbb R}^N)$$\bar{u}_n$强收敛于$u$.又由积分的平移不变性和(3.17)-(3.19)式, 有$u\in \Sigma$$I(u)=C$.从而$u$是方程(1.1)的基态解.

参考文献
[1] Pekar S. Untersucheng über die Elektronentheorie der Kristalle. Berlin: Akademie Verlag, 1954.
[2] Alexandrov A S, Devreese J T. Advances in Polaron Physics. Berlin: Springer, 2010.
[3] Lieb E H. Existence and uniqueness of the minimizing solution of choquards nonlinear equation. Stud Appl Math, 1976/1977, 57: 93–105.
[4] Lions P L. Solutions of Hartree-Fock equations for colomb system. Comm Math Phys, 1987, 109: 33–97. DOI:10.1007/BF01205672
[5] Alves C, Yang M. Existence of semiclassical ground state solutions for a generalized Choquard equation. J Diff Eq, 2014, 257: 4133–4164. DOI:10.1016/j.jde.2014.08.004
[6] D'Avenia P, Siciliano G, Squassina M. On fractional Choquard equation. Math Models and Methods in Appl Sciences, 2015, 25: 1447–1476. DOI:10.1142/S0218202515500384
[7] Cingolani S, Clapp M, Secchi S. Multiple solutions to magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63: 233–248. DOI:10.1007/s00033-011-0166-8
[8] Ma L, Zhao L. Classification of positive solitary solutions of the nonlinear Choquard equation. Arch Ration Mech Anal, 2010, 195: 455–467. DOI:10.1007/s00205-008-0208-3
[9] Melgaard M, Zongo F. Multiple solutions of the quasirelativistic Choquard equation. J Math Phys, 2012, 53: 033709. DOI:10.1063/1.3695991
[10] Moroz V, Schaftingen Van. Semi-classical states for the Choquard equation. Calc Var Partial Differential Equations, 2015, 52: 199–235. DOI:10.1007/s00526-014-0709-x
[11] Wei J, Winter M. Strongly interacting bumps for the Schrödinger-Newton equations. J Math Phys, 2009, 50: 012905. DOI:10.1063/1.3060169
[12] Zhang Z, Tassilo K, Hu A, Xia H. Existence of a nontrivial solution for Choquard's equation. Acta Mathematica Scientia, 2006, 26B(3): 460–468.
[13] Sun X, Zhang Y. Multi-peak solution for nonlinear magnetic Choquard type equation. J Math Phys, 2014, 55(3): 1731–1769.
[14] 曹道珉. 广义Choquard-Pekar方程非平凡解的存在性. 数学物理学报, 1989, 9A(1): 101–112.
Cao D M. The existence of nontrivial solution to the generalized Choquard-Pekar equation. Acta Mathematica Scientia, 1989, 9A(1): 101–112.
[15] Stein E M, Weiss G. Fractional integrals in n-dimensional Euclidean spaces. J Math Mech, 1958, 7(4): 503–514.
[16] Chen W, Jin C, Li C, Lim J. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Discrete and Continuous Dynamical Systems, 2005, Supplement Volume: 164–172.
[17] Lions P L. The concentration-compactness principle in the calculus of variation. The locally compact case.Part I. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 109–145. DOI:10.1016/S0294-1449(16)30428-0
[18] Lions P L. The concentration-compactness principle in the calculus of variation. Part Ⅱ. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 223–283. DOI:10.1016/S0294-1449(16)30422-X