数学物理学报  2018, Vol. 38 Issue (1): 10-23   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
马丽娜
李书海
牛潇萌
张海燕
关于对称共轭点的倒星象函数某些子类的系数估计
马丽娜, 李书海, 牛潇萌, 张海燕     
赤峰学院数学与统计学院 内蒙古 赤峰 024000
摘要:该文利用从属关系引入了某些关于对称共轭点的亚纯倒星象函数的新子类并获得了函数类的积分表达式和系数估计,所得结果改进了亚纯p叶函数类的一般积分表示.特别地,该文得到了极值函数并画出了函数值域的图像,所得结果推广了一些已知结论.
关键词解析函数    对称共轭点    从属    倒星象    亚纯    积分表达式    系数估计    
Coefficient Estimate for Some Subclasses of Reciprocal Starlike Functions with Respect to Symmetric Conjugate Points
Ma Lina, Li Shuhai, Niu Xiaomeng, Zhang Haiyan     
School of Mathematics and Statistics, Chifeng University, Inner Mongolia Chifeng 024000
Abstract: In the present paper, we introduce some new classes of meromorphically reciprocal starlike functions with respect to symmetric conjugate points defined by subordination and obtain the integral representation and the coefficient estimates of the classes. The results improve the general known integral representations of meromorphic p-valent functions. Specially, we obtain the extreme function and give the graph of the range of the function. The results present here improve and generalize some known results.
Key words: Analytic functions     Symmetric conjugate points     Subordination     Reciprocal starlike     Meromorphic     Integral representation     Coefficient estimate    
1 引言

${\cal A}$ 表示单位圆盘 ${\Bbb U}=\{ z\in{\Bbb C}: |z|<1\}$ 内解析且具有如下形式

$ f(z)=z+\sum\limits_{n=2}^{\infty}a_{n}z^{n} $

的函数类.

${\cal S}, {\cal S}^*, {\cal K}, {\cal C}, {\cal C}^*$ 分别表示 ${\Bbb U}$ ${\cal A}$ 的单叶, 星象, 凸象, 近于凸, 拟凸函数子类(见文献[1-4]).

$\Sigma_p$ 表示去心单位圆盘 ${\Bbb U}^*=\{z\in {\Bbb C}:0<|z|<1\}={\Bbb U}\backslash\{0\}$ 内解析且具有如下形式的亚纯 $p$ 叶实系数函数类

$ \begin{equation}\label{eq:a1} f(z)=z^{-p}+\sum\limits_{k=1}^{\infty}a_kz^{k-p} \quad( a_k\in {\Bbb R}, p\in {\Bbb N}=\{1, 2, \cdots\}). \end{equation} $ (1.1)

特别地, 记 $\Sigma_1=\Sigma$ .

$f, g\in \Sigma_p$ , 其中函数 $f$ 具有(1.1)式形式且 $g$ 定义为

$ g(z)=z^{-p}+\sum\limits_{k=1}^\infty b_kz^{k-p}\quad( b_k\in {\Bbb R}). $

函数 $f$ $g$ 的Hadamard积(卷积) $f*g$ 定义为

$ (f*g)(z):=z^{-p}+\sum\limits_{k=1}^\infty a_kb_kz^{k-p}=:(g*f)(z) \quad(a_k, b_k\in {\Bbb R}). $

${\cal P}$ 表示在 ${\Bbb U}$ 内解析且具有如下形式

$ \begin{equation}\label{eq:a2} p(z)=1+\sum\limits_{k=1}^\infty p_kz^k \end{equation} $ (1.2)

的函数 $p(z)$ 的全体, 且 ${\rm Re}p(z)>0$ .

设函数 $u(z)$ $v(z)$ ${\cal A}$ 中解析, 若存在一个Schwarz函数 $\omega(z)$ , 在 ${\Bbb U}$ 内满足 $\omega(0)=0$ $|\omega(z)|<1$ , 使得 $u(z)=v(\omega(z))~(z\in {\Bbb U})$ , 则称函数 $u(z)$ 从属于 $v(z)$ , 记作 $u(z)\prec v(z)$ .另外, 若 $v$ ${\Bbb U}$ 内单叶, 则 $u(z)\prec v(z)$ 等价于

$ u(0)=v(0)~~~\hbox{和}~~~u({\Bbb U})\subset v({\Bbb U}). $

函数 $f(z)\in {\cal A}$ 属于函数类 ${\cal S}^*(\phi)$ , 如果满足如下条件

$ \frac{zf'(z)}{f(z)}\prec \phi(z), $

其中 $\phi(z)\in {\cal P}$ .函数类 ${\cal S}^*(\phi)$ 和相应的凸函数类 ${\cal K}(\phi)$ 由Ma和Minda定义[5].

1959年, Sakaguchi在文献[6]中引入关于对称点的星象函数类 $S_s^*$ , $f\in S_s^*$ 当且仅当

$ {\rm Re} \frac{zf'(z)}{f(z)-f(-z)}>0. $

1987年, El-Ashwa和Thomas[7]引入并研究了关于共轭点的星象函数类及关于对称共轭点的星象函数类, 分别满足如下条件

$ {\rm Re}\frac{zf'(z)}{f(z)+\overline{f}(\overline{z})}>0\quad \hbox{和} \quad {\rm Re}\frac{zf'(z)}{f(z)-\overline{f}(-\overline{z})}>0. $

利用从属原理, 本文引入并研究了亚纯 $p$ 叶实系数函数类 $\Sigma_p$ 的子类如下.

定义1.1 函数 $f(z)\in \Sigma_p$ 属于关于对称共轭点的亚纯 $p$ $\beta$ 阶倒星象实系数函数类 ${\cal MS}_{sc}(p;\beta;\phi)$ 当且仅当

$ \begin{equation}\label{eq:a3} \frac{-p}{1-p\beta}\left\{\frac{f(z)+(-1)^p\overline{f}(-\overline{z})}{2zf'(z)}+\beta\right\}\prec \phi(z), \end{equation} $ (1.3)

其中 $p\in{\Bbb N}, \beta\in{\Bbb R}, p\beta<1, \phi(z)=1+B_1z+B_2z^2+\cdots\in{\cal P}, B_1>0$ .函数 $f(z)\in \Sigma_p$ 属于关于对称共轭点的亚纯 $p$ $\beta$ 阶倒凸象实系数函数类 ${\cal MK}_{sc}(p;\beta;\phi)$ 当且仅当

$ -zf'(z)/p\in {\cal MS}_{sc}(p;\beta;\phi). $

定义1.2 函数 $f(z)\in \Sigma_p$ 属于关于对称共轭点的亚纯 $p$ $\beta$ 阶倒近于凸实系数函数类 ${\cal MCS}_{sc}(p;\beta;\phi, \psi)$ 当且仅当

$ \begin{equation}\label{eq:a4} \frac{-p}{1-p\beta}\left\{\frac{g(z)+(-1)^p\overline{g}(-\overline{z})}{2zf'(z)}+\beta\right\}\prec \psi(z), \end{equation} $ (1.4)

其中 $p\in{\Bbb N}, \beta\in{\Bbb R}, p\beta<1, g\in {\cal MS}_{sc}(p;\beta;\phi), \phi(z)=1+B_1z+B_2z^2+\cdots\in{\cal P}, B_1>0, $ $ \psi(z)=1+D_1z+D_2z^2+\cdots\in{\cal P}, D_1>0$ .

定义1.3 函数 $f(z)\in \Sigma_p$ 属于关于对称共轭点的亚纯 $p$ $\beta$ 阶倒拟凸实系数函数类 ${\cal MCK}_{sc}(p;\beta;\phi, \psi)$ 当且仅当

$ \begin{equation}\label{eq:a5} \frac{-p}{1-p\beta}\left\{\frac{(g(z)+(-1)^p\overline{g}(-\overline{z}))'}{2(zf'(z))'}+\beta\right\}\prec \psi(z), \end{equation} $ (1.5)

其中 $p\in{\Bbb N}, \beta\in{\Bbb R}, p\beta<1, g\in {\cal MK}_{sc}(p;\beta;\phi), \phi(z)=1+B_1z+B_2z^2+\cdots\in{\cal P}, B_1>0, $ $\psi(z)=1+D_1z+D_2z^2+\cdots\in{\cal P}, D_1>0$ .

引理1.1[5] 如果 $p(z)=1+c_1z+c_2z^2+\cdots\in {\cal P}$ , 则

$ |c_2-\upsilon c_1^2|\leq\left\{ \begin{array}{ll} -4\upsilon+2, \quad &\upsilon\leq0, \\ 2,&0\leq \upsilon \leq 1, \\ 4\upsilon-2, &\upsilon\geq 1. \end{array} \right. $

$\upsilon<0$ $\upsilon>1$ 时, 等式成立当且仅当 $p(z)=(1+z)/(1-z)$ 或其旋转.

$0<\upsilon<1$ 时, 等式成立当且仅当 $p(z)=(1+z^2)/(1-z^2)$ 或其旋转.

$\upsilon=0$ 时, 等式成立当且仅当

$ p(z)=\Big(\frac{1}{2}+\frac{1}{2}\lambda\Big)\frac{1+z}{1-z}+ \Big(\frac{1}{2}-\frac{1}{2}\lambda\Big)\frac{1-z}{1+z}\quad (0\leq \lambda\leq1) $

或其旋转.

$\upsilon=1$ 时, 等式成立当且仅当 $p(z)$ $\upsilon=0$ 时等式成立的倒数.

特别地, 当 $0<\upsilon<1$ 时, 有

$ |c_2-\upsilon c_1^2|+\upsilon|c_1|^2\leq2\quad\Big(0<\upsilon\leq\frac{1}{2}\Big) $

$ |c_2-\upsilon c_1^2|+(1-\upsilon)|c_1|^2\leq2\quad\Big(\frac{1}{2}<\upsilon\leq1\Big). $

引理1.2[5] 如果 $p(z)=1+c_1z +c_2z^2+\cdots\in{\cal P}$ $\gamma$ 为复数, 则

$ |c_2-\gamma c_1^2|\leq 2\max\{1, |2\gamma-1|\}. $

$p(z)$ 取得如下函数时, 取得极值

$ p(z)=\frac{1+z^2}{1-z^2} \quad \hbox{或} \quad p(z)=\frac{1+z}{1-z}. $
2 积分表达式

首先, 我们得到了本文中定义的函数类的积分表达式.所得结论推广了亚纯 $p$ 叶函数类的一般已得到的积分表达式[8-11].

定理2.1 若 $f(z)\in {\cal MS}_{sc}(p;\beta;\phi)$ , 则

$ \begin{equation}\label{eq:b1} f(z)=\frac{\exp\left\{-\frac{p(1-p\beta)}{2}\int_0^z\phi^\omega_{p\beta}(t){\rm d}t\right\}}{z^{p}[(1-p\beta)\phi(\omega(z))+p\beta]}\ast E_p(z)+a_p, \end{equation} $ (2.1)

其中

$ \begin{equation}\label{eq:b2} \phi^\omega_{p\beta}(t)=\frac{1-\phi(\omega(t))}{t[(1-p\beta)\phi(\omega(t))+p\beta]}+\frac{1-\overline{\phi}(\omega(-\overline{t}))}{t[(1-p\beta)\overline{\phi}(\omega(-\overline{t}))+p\beta]}, \end{equation} $ (2.2)
$ \begin{equation}\label{eq:b3} E_p(z)=z^{-p}+\sum\limits_{k=1}^{p-1}\frac{p}{p-k}z^{k-p}+\sum\limits_{k=p+1}^{\infty}\frac{p}{p-k}z^{k-p}, \end{equation} $ (2.3)

$a_p$ 为任意实数, $\omega(z)$ ${\Bbb U}$ 内解析且 $\omega(0)=0$ $|\omega(z)|<1$ .

 假设 $f(z)\in {\cal MS}_{sc}(p;\beta;\phi)$ .根据定义1.1及从属关系, 有

$ \begin{equation}\label{eq:b4} \frac{-p}{1-p\beta}\left\{\frac{f(z)+(-1)^p\overline{f}(-\overline{z})}{2zf'(z)}+\beta\right\}=\phi(\omega(z)), \end{equation} $ (2.4)

其中 $\omega(z)$ ${\Bbb U}$ 内解析且 $\omega(0)=0, |\omega(z)|<1$ .用 $-\overline{z}$ 替代(2.4)式中的 $z$ , 得

$ \begin{equation}\label{eq:b5} \frac{-p}{1-p\beta}\left\{\frac{f(-\overline{z})+(-1)^p\overline{f}(z)}{-2\overline{z}f'(-\overline{z})}+\beta\right\}=\phi(\omega(-\overline{z})). \end{equation} $ (2.5)

由(2.5)式, 有

$ \begin{equation}\label{eq:b6} \frac{-p}{1-p\beta}\left\{\frac{\overline{f}(-\overline{z})+(-1)^pf(z)}{-2z\overline{f'}(-\overline{z})}+\beta\right\}=\overline{\phi}(\omega(-\overline{z})). \end{equation} $ (2.6)

根据(2.4)和(2.6)式, 有

$ \begin{equation}\label{eq:b7} \frac{z(f'(z)+(-1)^{p+1}\overline{f'}(-\overline{z}))}{f(z)+(-1)^p\overline{f}(-\overline{z})} =-\frac{p}{2}\left(\frac{1}{(1-p\beta)\phi(\omega(z))+p\beta}+\frac{1}{(1-p\beta)\overline{\phi}(\omega(-\overline{z}))+p\beta}\right). \end{equation} $ (2.7)

上式等价于

$ \begin{equation}\label{eq:b8} \frac{(\frac{f(z)+(-1)^p\overline{f}(-\overline{z})}{2})'}{\frac{f(z)+(-1)^p\overline{f}(-\overline{z})}{2}}+\frac{p}{z} =-\frac{p(1-p\beta)}{2}\phi^\omega_{p\beta}(z), \end{equation} $ (2.8)

其中 $\phi^\omega_{p\beta}(z)$ 由(2.2)式定义.对等式(2.8)两边积分, 得

$ \begin{equation}\label{eq:b9} \log\left[\frac{f(z)+(-1)^p\overline{f}(-\overline{z})}{2}\cdot z^p\right]=-\frac{p(1-p\beta)}{2}\int_0^z\phi^\omega_{p\beta}(t){\rm d}t, \end{equation} $ (2.9)

$ \begin{equation}\label{eq:b10} \frac{f(z)+(-1)^p\overline{f}(-\overline{z})}{2}=z^{-p}\exp\left\{-\frac{p(1-p\beta)}{2}\int_0^z\phi^\omega_{p\beta}(t){\rm d}t\right\}. \end{equation} $ (2.10)

根据(2.4)-(2.10)式, 有

$ \begin{eqnarray*} f'(z)=-\frac{p}{z^{p+1}[(1-p\beta)\phi(\omega(z))+p\beta]}\exp\left\{-\frac{p(1-p\beta)}{2}\int_0^z\phi^\omega_{p\beta}(t){\rm d}t\right\}. \end{eqnarray*} $

根据Hadamard积(卷积)的性质, 有

$ \begin{eqnarray*} f(z)=\frac{zf'(z)}{-p}\ast \bigg(z^{-p}+\sum\limits_{k=1}^{p-1} \frac{p}{p-k}z^{k-p}+\sum\limits_{k=p+1}^{\infty}\frac{p}{p-k}z^{k-p}\bigg)+a_p. \end{eqnarray*} $

因此

$ \begin{eqnarray*} f(z)=\frac{\exp\left\{-\frac{p(1-p\beta)}{2}\int_0^z\phi^\omega_{p\beta} (t){\rm d}t\right\}}{z^{p}[(1-p\beta)\phi(\omega(z))+p\beta]}\ast \bigg(z^{-p}+\sum\limits_{k=1}^{p-1}\frac{p}{p-k}z^{k-p}+\sum\limits_{k=p+1}^{\infty}\frac{p}{p-k}z^{k-p}\bigg)+a_p, \end{eqnarray*} $

其中 $a_p$ 为任意实数.

从而定理2.1得证.

推论2.1 设 $f(z)\in {\cal MK}_{sc}(p;\beta;\phi)$ , 则

$ \begin{eqnarray*} f(z)=\frac{\exp\left\{-\frac{p(1-p\beta)}{2}\int_0^z\phi^\omega_{p\beta}(t){\rm d}t\right\}}{z^{p}[(1-p\beta)\phi(\omega(z))+p\beta]}\ast H_p(z)+a_p, \end{eqnarray*} $

其中

$ \begin{equation}\label{eq:b11} H_p(z)=z^{-p}+\sum\limits_{k=1}^{p-1} \Big(\frac{p}{p-k}\Big)^2z^{k-p}+\sum\limits_{k=p+1}^{\infty} \Big(\frac{p}{p-k}\Big)^2z^{k-p}, \end{equation} $ (2.11)

$\phi^\omega_{p\beta}(t)$ 由(2.2)式定义, $a_p$ 为任意实数, $\omega(z)$ ${\Bbb U}$ 内解析且 $\omega(0)=0, |\omega(z)|<1$ .

定理2.2 设 $f(z)\in {\cal MCS}_{sc}(p;\beta;\phi;\psi)$ , 则

$ \begin{equation}\label{eq:b12} f(z)=\frac{\exp\left\{\frac{-p(1-p\beta)}{2}\int_0^z \phi^{\omega_2}_{p\beta}(t){\rm d}t\right\}}{z^{p}[(1-p\beta)\psi(\omega_1(z))+p\beta]}\ast E_p(z)+a_p, \end{equation} $ (2.12)

其中 $\phi^{\omega_2}_{p\beta}(t)$ 由(2.2)式定义, $E_p(z)$ 由(2.3)式定义, $a_p$ 为任意实数, $\omega_1(z), \omega_2(z)$ ${\Bbb U}$ 内解析且 $\omega_1(0)=\omega_2(0)=0, |\omega_1(z)|<1$ $|\omega_2(z)|<1$ .

 假设 $f(z)\in {\cal MCS}_{sc}(p;\beta;\phi;\psi)$ .根据定义1.2及从属关系, 有

$ \begin{equation}\label{eq:b13} \frac{-p}{1-p\beta}\left\{\frac{g(z)+(-1)^p\overline{g}(-\overline{z})}{2zf'(z)}+\beta\right\}=\psi(\omega_1(z)) \end{equation} $ (2.13)

$ \begin{equation}\label{eq:b14} \frac{-p}{1-p\beta}\left\{\frac{g(z)+(-1)^p\overline{g}(-\overline{z})}{2zg'(z)}+\beta\right\}=\phi(\omega_2(z)), \end{equation} $ (2.14)

其中 $\omega_1(z)$ $\omega_2(z)$ ${\Bbb U}$ 内解析且 $\omega_1(0)=\omega_2(0)=0, |\omega_1(z)|<1$ $|\omega_2(z)|<1$ .

根据定理2.1中的(2.10)式, 有

$ \begin{equation}\label{eq:b15} \frac{g(z)+(-1)^p\overline{g}(-\overline{z})}{2}=z^{-p}\exp\left\{-\frac{p(1-p\beta)}{2}\int_0^z\phi^{\omega_2}_{p\beta}(t){\rm d}t\right\}, \end{equation} $ (2.15)

其中 $\phi_{p\beta}^{\omega_2}(t)$ 由(2.2)式定义.

由(2.13)及(2.15)式, 有

$ \begin{equation}\label{eq:b16} f'(z)=\frac{-p\exp\left\{-\frac{p(1-p\beta)}{2}\int_0^z\phi_{p\beta}^{\omega_2}(t){\rm d}t\right\}}{z^{p+1}[(1-p\beta)\psi(\omega_1(z))+p\beta]}. \end{equation} $ (2.16)

与定理2.1类似, 从而得到定理2.2中(2.12)式.

定理2.3 设 $f(z)\in {\cal MCK}_{sc}(p;\beta;\phi;\psi)$ , 则

$ \begin{equation}\label{eq:b17} f(z)=\frac{\exp\left\{\frac{-p(1-p\beta)}{2}\int_0^z \phi^{\omega_2}_{p\beta}(t){\rm d}t\right\}}{z^{p}[(1-p\beta)\psi(\omega_1(z))+p\beta]}\ast H_p(z)+a_p, \end{equation} $ (2.17)

其中 $a_p$ 为任意实数, $\phi^{\omega_2}_{p\beta}(t)$ 由(2.2)式定义, $H_p(z)$ 由(2.11)式定义, $\omega_1(z), \omega_2(z)$ ${\Bbb U}$ 内解析且 $\omega_1(0)=\omega_2(0)=0, |\omega_1(z)|<1, |\omega_2(z)|<1$ .

3 Fekete-Szegö不等式

本节中, 我们得到本文中函数类的系数估计并获得了相应的极值函数.特别地, 画出了函数值域的图像.

定理3.1 设函数 $f(z)$ 具有(1.1)式形式, 若对于 $p\geq 2$ , $f(z)\in{\cal MS}_{sc}(p;\beta;\phi)$ , 则

$ |a_2-\mu a_1^2|\leq \left\{\begin{array}{ll} \frac{p(1-p\beta)B_1}{2}\left[\frac{B_2}{B_1}-B_1(1-p\beta) \Big(1+\frac{2\mu}{p(1-\frac{1}{p})^2}\Big)\right], ~~&\mu\leq\sigma_1, \\ \frac{p(1-p\beta)B_1}{2}, &\sigma_1\leq\mu\leq\sigma_2, \\ \frac{p(1-p\beta)B_1}{2}\left[B_1(1-p\beta) \Big(1+\frac{2\mu}{p(1-\frac{1}{p})^2}\Big)-\frac{B_2}{B_1}\right],& \mu\geq\sigma_2, \end{array}\right. $

其中

$ \begin{equation}\label{eq:c1} \sigma_1=\frac{p(1-\frac{1}{p})^2}{2}\left[\frac{B_2-B_1}{B_1^2(1-p\beta)}-1\right], \end{equation} $ (3.1)
$ \begin{equation}\label{eq:c2} \sigma_2=\frac{p(1-\frac{1}{p})^2}{2}\left[\frac{B_2+B_1}{B_1^2(1-p\beta)}-1\right]. \end{equation} $ (3.2)

上面估计是精确的.

 因为 $f(z)\in {\cal MS}_{sc}(p;\beta;\phi)$ , 存在解析函数 $\omega:{\Bbb U}\rightarrow{\Bbb U}$ 满足 $\omega(0)=0$ $|\omega(z)|<1$ , 使得

$ \frac{-p}{1-p\beta}\left\{\frac{f(z)+(-1)^p\overline{f}(-\overline{z})}{2zf'(z)}+\beta\right\}= \phi(\omega(z)). $

$ F(z):=\frac{-p}{1-p\beta}\left\{\frac{f(z)+(-1)^p\overline{f}(-\overline{z})}{2zf'(z)}+\beta\right\}. $

从而有

$ \begin{equation}\label{eq:c3} F(z)=1-\frac{(1-\frac{1}{p})}{1-p\beta}a_1 z+\left[\frac{(1-\frac{1}{p})^2}{1-p\beta}a_1^2+\frac{2}{p(1-p\beta)}a_2\right]z^2+\cdots. \end{equation} $ (3.3)

定义函数 $p(z)$

$ p(z)=\frac{1+\omega(z)}{1-\omega(z)}=1+p_1z+p_2z^2+\cdots, $

上式等价于

$ \omega(z)=\frac{p(z)-1}{p(z)+1}=\frac{1}{2}\left\{p_1z+\left(p_2-\frac{p_1^2}{2}\right)z^2+\left[p_3+\frac{p_1}{2}\left(\frac{p_1^2}{2}-p_2\right)-\frac{p_1p_2}{2}\right]z^3+\cdots\right\}. $

显然 $p\in{\cal P}$ .从而, 有

$ \begin{equation}\label{eq:c4} F(z)=\phi\left(\frac{p(z)-1}{p(z)+1}\right)=1+\frac{1}{2}B_1p_1z+\left[\frac{1}{2}B_1p_2+\frac{1}{4}(B_2-B_1)p_1^2\right]z^2+\cdots. \end{equation} $ (3.4)

根据(3.3)和(3.4)式, 得

$ \begin{equation}\label{eq:c5} a_1=-\frac{(1-p\beta)}{2(1-\frac{1}{p})}B_1p_1, \end{equation} $ (3.5)
$ \begin{equation}\label{eq:c6} a_2=\frac{p(1-p\beta)}{2}\left[\frac{1}{2}B_1p_2+\frac{1}{4}(B_2-B_1)p_1^2-\frac{(1-p\beta)}{4}B_1^2p_1^2\right]. \end{equation} $ (3.6)

因此, 有

$ \begin{equation}\label{eq:c7} a_2-\mu a_1^2=\frac{p(1-p\beta)B_1}{4}\{p_2-\gamma p_1^2\}, \end{equation} $ (3.7)

其中

$ \gamma=\frac{(1-p\beta)B_1}{2}+\frac{\mu(1-p\beta) B_1}{p(1-\frac{1}{p})^2}-\frac{B_2-B_1}{2B_1}. $

利用引理1.1和定理2.1, 极值函数如下.

(ⅰ) 如果 $\mu<\sigma_1$ $\mu>\sigma_2$ , 则等式成立当且仅当

$ f(z)=\frac{\exp\left\{\frac{-p(1-p\beta)}{2}\int_0^z \phi^2_{p\beta}(t){\rm d}t\right\}}{z^{p}[(1-p\beta)\phi(z)+p\beta]}\ast E_p(z)+a_p $

或其旋转, 其中 $E_p(z)$ 由(2.3)式定义, 且

$ \phi^2_{p\beta}(t)=\frac{1-\phi(t)}{t[(1-p\beta)\phi(t)+p\beta]}+\frac{1-\overline{\phi}(-\overline{t})}{t[(1-p\beta)\overline{\phi}(-\overline{t})+p\beta]}, $
$ a_p= \left\{\begin{array}{ll} (1-2\beta)[B_2-(1-2\beta)B_1^2], ~~&p=2, \\ \hbox{任意实数},&p\geq 3. \end{array}\right. $

(ⅱ) 如果 $\sigma_1<\mu<\sigma_2$ , 则等式成立当且仅当

$ f(z)=\frac{\exp\left\{\frac{-p(1-p\beta)}{2}\int_0^z \phi^3_{p\beta}(t){\rm d}t\right\}}{z^{p}[(1-p\beta)\phi(z^2)+p\beta]}\ast E_p(z)+a_p $

或其旋转, 其中 $E_p(z)$ 由(2.3)式定义, 且

$ \phi^3_{p\beta}(t)=\frac{1-\phi(t^2)}{t[(1-p\beta)\phi(t^2)+p\beta]}+\frac{1-\overline{\phi}(\overline{t}^2)}{t[(1-p\beta)\overline{\phi}(\overline{t}^2)+p\beta]}, $
$ a_p= \left\{\begin{array}{ll} (1-2\beta)B_1, ~~&p=2, \\ \hbox{任意实数}, ~~& p\geq 3. \end{array}\right. $

(ⅲ) 如果 $\mu=\sigma_1$ , 则等式成立当且仅当

$ f(z)=\frac{\exp\left\{\frac{-p(1-p\beta)}{2}\int_0^z \phi^\lambda_{p\beta}(t){\rm d}t\right\}}{z^{p}[(1-p\beta)\phi(\frac{z(z+\lambda)}{1+\lambda z})+p\beta]}\ast E_p(z)+a_p $

或其旋转, 其中 $E_p(z)$ 由(2.3)式定义, 且

$ \phi^\lambda_{p\beta}(t)=\frac{1-\phi(\frac{t(t+\lambda)}{1+\lambda t})}{t[(1-p\beta)\phi(\frac{t(t+\lambda)}{1+\lambda t})+p\beta]}+\frac{1-\overline{\phi}(\frac{-\overline{t}(-\overline{t}+\lambda)}{1-\lambda \overline{t}})}{t[(1-p\beta)\overline{\phi}(\frac{-\overline{t}(-\overline{t}+\lambda)}{1-\lambda \overline{t}})+p\beta]}\quad(0\leq \lambda \leq 1), $
$ a_p= \left\{\begin{array}{ll} (1-2\beta)[(1-\lambda^2)B_1+\lambda^2B_2-(1-2\beta)\lambda^2B_1^2], ~~&p=2, \\ \hbox{任意实数},&p\geq 3. \end{array}\right. $

(ⅳ) 如果 $\mu=\sigma_2$ , 则等式成立当且仅当

$ f(z)=\frac{\exp\left\{\frac{-p(1-p\beta)}{2}\int_0^z \phi^{\widetilde{\lambda}}_{p\beta}(t){\rm d}t\right\}}{z^{p}[(1-p\beta)\phi(-\frac{z(z+\lambda)}{1+\lambda z})+p\beta]}\ast E_p(z)+a_p $

或其旋转, 其中 $E_p(z)$ 由(2.3)式定义, 且

$ \phi^{\widetilde{\lambda}}_{p\beta}(t)=\frac{1-\phi(-\frac{t(t+\lambda)}{1+\lambda t})}{t[(1-p\beta)\phi(-\frac{t(t+\lambda)}{1+\lambda t})+p\beta]}+\frac{1-\overline{\phi}(\frac{\overline{t}(-\overline{t}+\lambda)}{1-\lambda \overline{t}})}{t[(1-p\beta)\overline{\phi}(\frac{\overline{t}(-\overline{t}+\lambda)}{1-\lambda \overline{t}})+p\beta]}\quad(0\leq \lambda \leq 1), $
$ a_p= \left\{\begin{array}{ll} (1-2\beta)[(\lambda^2-1)B_1+\lambda^2B_2-(1-2\beta)\lambda^2B_1^2], ~~&p=2, \\ \hbox{任意实数},&p\geq 3. \end{array}\right. $

定理3.1得证.

定理3.1中, 分别取 $\phi(z)=\frac{1+Az}{1+Bz}$ $\phi(z)=\frac{1+(1-2\alpha)z}{1-z}$ , 则有如下推论.

推论3.1 设 $-1\leq B<A\leq 1, p\geq2$ . $f(z)$ 具有(1.1)式形式, 若 $f(z)\in {\cal MS}_{sc}(p;\beta;\frac{1+Az}{1+Bz})$ , 则

$ |a_2-\mu a_1^2|\leq\left\{\begin{array}{ll} \frac{p(1-p\beta)(A-B)}{2}\left[-B-(A-B)(1-p\beta) \Big(1+\frac{2\mu}{p(1-\frac{1}{p})^2}\Big)\right], &\mu\leq\sigma_1, \\ \frac{p(1-p\beta)(A-B)}{2}, &\sigma_1\leq\mu\leq\sigma_2, \\ \frac{p(1-p\beta)(A-B)}{2}\left[(A-B)(1-p\beta)\Big(1+\frac{2\mu} {p(1-\frac{1}{p})^2}\Big)+B\right], & \mu\geq\sigma_2, \end{array}\right. $

其中 $\sigma_1=\frac{p(1-\frac{1}{p})^2}{2}\left[-\frac{B+1}{(1-p\beta)(A-B)}-1\right], \sigma_2=\frac{p(1-\frac{1}{p})^2}{2}\left[-\frac{B-1}{(1-p\beta)(A-B)}-1\right].$ 上面估计是精确的.

(ⅰ) 如果 $\mu<\sigma_1$ $\mu>\sigma_2$ , 则等式成立当且仅当

$ f(z)=\frac{(1+Bz)\left\{1-[A-p\beta(A-B)]^2z^2\right\}^{\frac{p(1-p\beta)(A-B)}{2[A-p\beta(A-B)]}}}{z^p\left\{1+[A-p\beta(A-B)]z\right\}}\ast E_p(z)+a_p $

或其旋转, 其中 $E_p(z)$ 由(2.3)式定义, 且

$ a_p= \left\{\begin{array}{ll} -(1-2\beta)(A-B)(A-2\beta(A-B)), ~~&p=2, \\ \hbox{任意实数},&p\geq 3. \end{array}\right. $

(ⅱ) 如果 $\sigma_1<\mu<\sigma_2$ , 则等式成立当且仅当

$ f(z)=\frac{1}{z^p}(1+Bz^2)\left\{1+[A-p\beta(A-B)]z^2\right\}^{\frac{p(1-p\beta)(A-B)}{2[A-p\beta(A-B)]}-1}\ast E_p(z)+a_p $

或其旋转, 其中 $E_p(z)$ 由(2.3)式定义, 且

$ a_p= \left\{\begin{array}{ll} (1-2\beta)(A-B), ~~&p=2, \\ \hbox{任意实数},&p\geq 3. \end{array}\right. $

(ⅲ) 如果 $\mu=\sigma_1$ , 则等式成立当且仅当

$ f(z)=\frac{[Bz^2+(B+1)\lambda z+1]\exp\left\{\frac{-p(1-p\beta)}{2}\int_0^z \phi^\lambda_{p\beta}(t){\rm d}t\right\}}{z^{p}\left\{[A-p\beta(A-B)]z^2+[A-p\beta(A-B)+1]\lambda z+1\right\}}\ast E_p(z)+a_p $

或其旋转, 其中 $E_p(z)$ 由(2.3)式定义, $0\leq \lambda \leq 1$

$ \begin{eqnarray*} \phi^\lambda_{p\beta}(t)&=&\frac{(B-A)(t+\lambda)}{[A-p\beta(A-B)]t^2+[A-p\beta(A-B)+1]\lambda t+1}\\ &&+\frac{(B-A)(t-\lambda)}{[A-p\beta(A-B)]t^2-[A-p\beta(A-B)+1]\lambda t +1}, \end{eqnarray*} $
$ a_p= \left\{\begin{array}{ll} (1-2\beta)(A-B)\left\{1-\lambda^2[1+B+(1-2\beta)(A-B)]\right\}, ~~&p=2, \\ \hbox{任意实数},&p\geq 3. \end{array}\right. $

(ⅳ) 如果 $\mu=\sigma_2$ , 则等式成立当且仅当

$ f(z)=\frac{[Bz^2+(B-1)\lambda z-1]\exp\left\{\frac{-p(1-p\beta)}{2}\int_0^z \phi^{\widetilde{\lambda}}_{p\beta}(t){\rm d}t\right\}}{z^{p}\left\{[A-p\beta(A-B)]z^2+[A-p\beta(A-B)-1]\lambda z-1\right\}}\ast E_p(z)+a_p $

或其旋转, 其中 $E_p(z)$ 由(2.3)式定义, $0\leq \lambda \leq 1$

$ \begin{eqnarray*} \phi^{\widetilde{\lambda}}_{p\beta}(t)&=&\frac{(A-B)(t+\lambda)}{-[A-p\beta(A-B)]t^2-[A-p\beta(A-B)-1]\lambda t+1}\\ && +\frac{(A-B)(t-\lambda)}{-[A-p\beta(A-B)]t^2+[A-p\beta(A-B)-1]\lambda t+1}, \end{eqnarray*} $
$ a_p= \left\{\begin{array}{ll} (1-2\beta)(A-B)\left\{\lambda^2[1-B-(1-2\beta)(A-B)]-1\right\}, ~~&p=2, \\ \hbox{任意实数},&p\geq 3. \end{array}\right. $

推论3.2 设 $0\leq \alpha<1, p\geq2$ .函数 $f(z)$ 具有(1.1)式形式, 如果

$ f(z)\in {\cal MS}_{sc}(p;\beta;\frac{1+(1-2\alpha)z}{1-z}), $

$ |a_2-\mu a_1^2|\leq\left\{\begin{array}{ll} p(1-p\beta)(1-\alpha)\left[1-2(1-\alpha)(1-p\beta) \Big(1+\frac{2\mu}{p(1-\frac{1}{p})^2}\Big)\right], &\mu\leq\sigma_1, \\ p(1-p\beta)(1-\alpha), &\sigma_1\leq\mu\leq\sigma_2, \\ p(1-p\beta)(1-\alpha)\left[2(1-\alpha)(1-p\beta) \Big(1+\frac{2\mu}{p(1-\frac{1}{p})^2}\Big)-1\right],& \mu\geq\sigma_2, \end{array}\right. $

其中 $\sigma_1=-\frac{p(1-\frac{1}{p})^2}{2}, \sigma_2=\frac{p(1-\frac{1}{p})^2}{2(1-p\beta)(1-\alpha)}-\frac{p(1-\frac{1}{p})^2}{2}.$ 上面估计是精确的.

在推论3.2中, 取 $p=2, \beta=\frac{1}{8}, \alpha=0$ , 得到如下结论.

推论3.3 如果 $f(z)$ 具有(1.1)式形式, 且 $f(z)\in{\cal MS}_{sc}(2;\frac{1}{8};\frac{1+z}{1-z})$ , 则

$ |a_2-\mu a_1^2|\leq\left\{\begin{array}{ll} -\frac{3}{4}-9\mu, ~~& \mu\leq -\frac{1}{4}, \\ \frac{3}{2}, & -\frac{1}{4}\leq\mu\leq \frac{1}{12}, \\ \frac{3}{4}+9\mu,& \mu\geq \frac{1}{12}. \end{array}\right. $

上面估计是精确的.

(ⅰ) 如果 $\mu<-\frac{1}{4}$ $\mu>\frac{1}{12}$ , 则等式成立当且仅当

$ f(z)=z^{-2}-3z^{-1}-\frac{3}{4}-\frac{3}{2}z+\frac{3}{16}z^2+\frac{1}{16}z^3-\frac{1}{64}z^4 $

或其旋转.

(ⅱ) 如果 $-\frac{1}{4}<\mu<\frac{1}{12}$ , 则等式成立当且仅当

$ f(z)=z^{-2}+\frac{3}{2}+\frac{3}{4}z^2+\frac{1}{8}z^4 $

或其旋转.

特别地, 我们分别画出了函数(ⅰ)和(ⅱ)的值域的图像, 见图 1图 2.

图 1  

图 2  

如果 $\sigma_1<\mu<\sigma_2$ , 根据引理1.1, 定理3.1可得如下结论.

定理3.2 函数 $f(z)$ 具有(1.1)式形式, $f(z)\in{\cal MS}_{sc}(p;\beta;\phi)$ .设 $\sigma_1$ $\sigma_2$ 分别由(3.1)和(3.2)式给出, 且

$ \sigma_3=\frac{p}{2}(1-\frac{1}{p})^2\left[\frac{B_2}{B_1^2(1-p\beta)}-1\right]. $

如果 $\sigma_1\leq\mu\leq\sigma_3$ , 则

$ |a_2-\mu a_1^2|+\left[\mu+\left(1-\frac{B_2-B_1}{B_1^2(1-p\beta)}\right)\frac{p}{2} \Big(1-\frac{1}{p}\Big)^2\right]|a_1|^2\leq\frac{p(1-p\beta)B_1}{2}. $

如果 $\sigma_3\leq\mu\leq\sigma_2$ , 则

$ |a_2-\mu a_1^2|+\left[\left(\frac{B_1+B_2}{B_1^2(1-p\beta)}-1\right)\frac{p}{2} \Big(1-\frac{1}{p}\Big)^2-\mu\right]|a_1|^2\leq\frac{p(1-p\beta)B_1}{2}. $

利用与定理3.1同样的方法, 可以得到下面的结论.

定理3.3 函数 $f(z)$ 具有(1.1)式形式, 如果 $f(z)\in {\cal MK}_{sc}(p;\beta;\phi)(p\geq3)$ , 则

$ |a_2-\mu a_1^2|\leq\left\{\begin{array}{ll} \frac{p(1-p\beta)B_1}{2|1-\frac{2}{p}|}\left[\frac{B_2}{B_1}-B_1(1-p\beta) \Big(1+\frac{2\mu(1-\frac{2}{p})}{p(1-\frac{1}{p})^4}\Big)\right], ~~&\mu\leq\sigma_1, \\ \frac{p(1-p\beta)B_1}{2|1-\frac{2}{p}|}, &\sigma_1\leq\mu\leq\sigma_2, \\ \frac{p(1-p\beta)B_1}{2|1-\frac{2}{p}|}\left[B_1(1-p\beta) \Big(1+\frac{2\mu(1-\frac{2}{p})}{p(1-\frac{1}{p})^4}\Big)-\frac{B_2}{B_1}\right],& \mu\geq\sigma_2, \end{array}\right. $

其中

$ \sigma_1=\frac{p(1-\frac{1}{p})^4}{2(1-\frac{2}{p})}\left[\frac{B_2-B_1}{B_1^2(1-p\beta)}-1\right] $

$ \sigma_2=\frac{p(1-\frac{1}{p})^4}{2(1-\frac{2}{p})}\left[\frac{B_2+B_1}{B_1^2(1-p\beta)}-1\right]. $

上面估计是精确的.

定理3.4 如果函数 $f(z)$ 具有(1.1)式形式且 $f(z)\in{\cal MCS}_{sc}(p;\beta;\phi, \psi)(p\geq3)$ , 则

$ \begin{eqnarray*} |a_2-\mu a_1^2|&\leq&\frac{p(1-p\beta)B_1}{2|1-\frac{2}{p}|}\times\max\left\{1, \left|(1-p\beta)B_1-\frac{B_2}{B_1}\right|\right\}\\ &&+\frac{(1-p\beta)D_1}{|1-\frac{2}{p}|}\times\max\left\{1, \left|\left(1-\frac{(1-\frac{2}{p})\mu }{(1-\frac{1}{p})^2}\right)(1-p\beta)D_1-\frac{D_2}{D_1}\right|\right\}. \end{eqnarray*} $

 由于 $f(z)\in {\cal MCS}_{sc}(p;\beta;\phi, \psi)$ , 存在函数 $g(z)=z^{-p}+\sum\limits_{k=1}^\infty b_kz^{k-p}\in {\cal MS}_{sc}(p;\beta;\phi)$ 及一个Schwartz函数 $\omega_1(z)$ 满足

$ \begin{equation}\label{eq:c8} \frac{-p}{1-p\beta}\left\{\frac{g(z)+(-1)^p\overline{g}(-\overline{z})}{2zf'(z)}+\beta\right\}= \psi(\omega_1(z)). \end{equation} $ (3.8)

$p_1(z)=\frac{1+\omega_1(z)}{1-\omega_1(z)}$ , 显然 $p_1\in {\cal P}$ .因此, 设 $p_1(z)=1+d_1z+d_2z^2+\cdots$ .从而

$ \begin{equation}\label{eq:c9} \psi(\omega_1(z))=\psi\bigg(\frac{p_1(z)-1}{p_1(z)+1}\bigg)=1+\frac{1}{2}D_1d_1z+\left[\frac{1}{2}D_1d_2+\frac{1}{4}(D_2-D_1)d_1^2\right]z^2+\cdots. \end{equation} $ (3.9)

另一方面

$ \begin{eqnarray}\label{eq:c10} &&\frac{-p}{1-p\beta}\left\{\frac{g(z)+(-1)^p\overline{g}(-\overline{z})}{2zf'(z)}+\beta\right\} \\ &=&1-\frac{(1-\frac{1}{p})a_1 }{1-p\beta} z+\frac{b_2+(1-\frac{1}{p})^2a_1^2-(1-\frac{2}{p})a_2}{1-p\beta}z^2+\cdots. \end{eqnarray} $ (3.10)

由(3.8), (3.9)及(3.10)式, 得

$ \begin{eqnarray}\label{eq:c11} && 1-\frac{(1-\frac{1}{p})a_1 }{1-p\beta} z+\frac{b_2+(1-\frac{1}{p})^2a_1^2-(1-\frac{2}{p})a_2}{1-p\beta}z^2+\cdots \\ &=&1+\frac{1}{2}D_1d_1z+\left[\frac{1}{2}D_1d_2+\frac{1}{4}(D_2-D_1)d_1^2\right] z^2+\cdots. \end{eqnarray} $ (3.11)

比较(3.11)式中 $z$ $z^2$ 的系数, 得

$ \begin{equation}\label{eq:c12} -\frac{(1-\frac{1}{p})a_1 }{1-p\beta}=\frac{1}{2}D_1d_1 \end{equation} $ (3.12)

$ \begin{equation}\label{eq:c13} \frac{b_2+(1-\frac{1}{p})^2a_1^2-(1-\frac{2}{p})a_2}{1-p\beta}=\left[\frac{1}{2}D_1d_2+\frac{1}{4}(D_2-D_1)d_1^2\right]. \end{equation} $ (3.13)

由于 $g(z)\in {\cal MS}_{sc}(p;\beta;\phi)$ , 存在一个Schwartz函数 $\omega_2:{\Bbb U}\rightarrow{\Bbb U}$ 满足 $\omega_2(0)=0$ , 使得

$ \begin{equation}\label{eq:c14} \frac{-p}{1-p\beta}\left\{\frac{g(z)+(-1)^p\overline{g}(-\overline{z})}{2zg'(z)}+\beta\right\}= \phi(\omega_2(z)). \end{equation} $ (3.14)

$p_2(z)=\frac{1+\omega_2(z)}{1-\omega_2(z)}$ , 显然 $p_2\in {\cal P}$ .设 $p_2(z)=1+c_1z+c_2z^2+\cdots$ , 从而

$ \begin{equation}\label{eq:c15} \phi(\omega_2(z))=\phi\left(\frac{p_2(z)-1}{p_2(z)+1}\right)=1+\frac{1}{2}B_1c_1z+\left[\frac{1}{2}B_1c_2+\frac{1}{4}(B_2-B_1)c_1^2\right]z^2+\cdots. \end{equation} $ (3.15)

另一方面

$ \begin{eqnarray}\label{eq:c16} &&\frac{-p}{1-p\beta}\left\{\frac{g(z)+(-1)^p\overline{g}(-\overline{z})}{2zg'(z)}+\beta\right\} \\ &=&1-\frac{(1-\frac{1}{p})}{1-p\beta}b_1 z+\left[\frac{(1-\frac{1}{p})^2}{1-p\beta}b_1^2+\frac{2}{p(1-p\beta)}b_2\right]z^2+\cdots . \end{eqnarray} $ (3.16)

由(3.14), (3.15)及(3.16)式, 得

$ \begin{eqnarray}\label{eq:c17} &&1-\frac{(1-\frac{1}{p})}{1-p\beta}b_1 z+\left[\frac{(1-\frac{1}{p})^2}{1-p\beta}b_1^2+\frac{2}{p(1- p\beta)}b_2\right]z^2+\cdots\\ &=&1+\frac{1}{2}B_1c_1z+\left[\frac{1}{2}B_1c_2+\frac{1}{4}(B_2-B_1)c_1^2\right]z^2+\cdots. \end{eqnarray} $ (3.17)

比较(3.17)式中 $z$ $z^2$ 的系数, 得

$ \begin{equation}\label{eq:c18} -\frac{(1-\frac{1}{p})}{1-p\beta}b_1=\frac{1}{2}B_1c_1 \end{equation} $ (3.18)

$ \begin{equation}\label{eq:c19} b_2=\frac{p(1-p\beta)B_1}{4}\left[c_2+\frac{B_2-B_1}{2B_1}c_1^2-\frac{(1-p\beta)B_1c_1^2}{2}\right]. \end{equation} $ (3.19)

因此, 有

$ \begin{eqnarray*} &&\Big(1-\frac{2}{p}\Big)(a_2-\mu a_1^2)\\ &=&\frac{p(1-p\beta)B_1}{4}\left[c_2-\left(\frac{(1-p\beta)B_1}{2}-\frac{B_2-B_1}{2B_1}\right)c_1^2\right]\\ &&-\frac{(1-p\beta)D_1}{2}\left[d_2-\left(\frac{[(1-\frac{1}{p})^2-\mu (1-\frac{2}{p})](1-p\beta)D_1}{2(1-\frac{1}{p})^2}-\frac{D_2-D_1}{2D_1}\right)d_1^2\right]. \end{eqnarray*} $

从而

$ \begin{eqnarray*} |a_2-\mu a_1^2|&\leq&\frac{p(1-p\beta)B_1}{2|1-\frac{2}{p}|}\times\max\left\{1, \left|(1-p\beta)B_1-\frac{B_2}{B_1}\right|\right\}\\ &&+\frac{(1-p\beta)D_1}{|1-\frac{2}{p}|}\times\max\left\{1, \left|\left(1-\frac{(1-\frac{2}{p})\mu }{(1-\frac{1}{p})^2}\right)(1-p\beta)D_1-\frac{D_2}{D_1}\right|\right\}. \end{eqnarray*} $

上面估计是精确的, 极值函数如下

$ f(z)=\frac{\exp\left\{\frac{-p(1-p\beta)}{2}\int_0^z \phi^{m}_{p\beta}(t){\rm d}t\right\}}{z^{p}[(1-p\beta)\psi(z^{n-1})+p\beta]}\ast E_p(z)+a_p, \quad n=2, 3, $

其中

$ \phi^m_{p\beta}(t)=\frac{1-\phi(t^{m-1})}{t[(1-p\beta)\phi(t^{m-1})+p\beta]}+\frac{1-\overline{\phi}((-\overline{t})^{m-1})}{t[(1-p\beta)\overline{\phi}((-\overline{t})^{m-1})+p\beta]}, \quad m=2, 3, $

$E_p(z)$ 由(2.3)式定义及 $a_p$ 为任意实数.定理3.4证毕.

定理3.5 设 $f(z)$ 具有(1.1)式形式, 若 $f(z)\in {\cal MCK}_{sc}(p;\beta;\phi, \psi)(p\geq3)$ , 则

$ \begin{eqnarray*} |a_2-\mu a_1^2|&\leq&\frac{p(1-p\beta)B_1}{2|1-\frac{2}{p}|^{2}}\times\max\left\{1, \left|(1-p\beta)B_1-\frac{B_2}{B_1}\right|\right\}\\ &&+\frac{(1-p\beta)D_1}{|1-\frac{2}{p}|^{2}}\times\max\left\{1, \left|\left(1-\frac{(1-\frac{2}{p})^{2}\mu }{(1-\frac{1}{p})^4}\right)(1-p\beta)D_1-\frac{D_2}{D_1}\right|\right\}. \end{eqnarray*} $

上面估计是精确地, 极值函数如下

$ f(z)=\frac{\exp\left\{\frac{-p(1-p\beta)}{2}\int_0^z \phi^{m}_{p\beta}(t){\rm d}t\right\}}{z^{p}[(1-p\beta)\psi(z^{n-1})+p\beta]}\ast H_p(z)+a_p, \quad n=2, 3, $

其中

$ \phi^m_{p\beta}(t)=\frac{1-\phi(t^{m-1})}{t[(1-p\beta)\phi(t^{m-1})+p\beta]}+\frac{1-\overline{\phi}((-\overline{t})^{m-1})}{t[(1-p\beta)\overline{\phi}((-\overline{t})^{m-1})+p\beta]}, \quad m=2, 3, $

$H_p(z)$ 由(2.11)式定义, 及 $a_p$ 为任意实数.

参考文献
[1] Duren P L. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259. New York: Springer-Verlag, 1983.
[2] Srivastava H M, Owa S. Current Topics in Analytic Function Theory. Singapore: World Scientific, 1992.
[3] Owa S, Nunokawa M, Saitoh H, et al. Close-to-convexity, starlikeness, and convexity of certain analytic functions. Applied Mathematics Letters, 2002, 15(1): 63–69. DOI:10.1016/S0893-9659(01)00094-5
[4] Noor K I. On quasi-convex functions and related topics. International Journal of Mathematics and Mathematical Sciences, 1987, 10(2): 241–258. DOI:10.1155/S0161171287000310
[5] Ma W, Minda D. A Unified Treatment of Some Special Classes of Univalent Functions//Li Z, Ren F, Yang L, et al. Proceedings of the Conference on Complex Analysis. New York: International Press, 1994: 157-169
[6] Sakaguchi K. On a certain univalent mapping. Journal of the Mathematical Society of Japan, 1959, 11(1): 72–75. DOI:10.2969/jmsj/01110072
[7] El-Ashwah R M, Thomas D K. Some subclasses of closed-to-convex functions. Journal of the Ramanujan Mathematical Society, 1987, 2(1): 85–100.
[8] Wang Z G, Jiang Y P, Srivastava H M. Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function. Computers and Mathematics with Applications, 2009, 57(4): 571–586. DOI:10.1016/j.camwa.2008.01.038
[9] Shi L, Wang Z G, Zeng M H. Some subclasses of multivalent spirallike meromorphic functions. Journal of Inequalities and Applications, 2013, 2013(1): 336. DOI:10.1186/1029-242X-2013-336
[10] 彭娟, 刘文娟, 杨清. 与函数类Fp, kλ(α; a, c; h)有关的积分表示和卷积性质. 淮阴师范学院学报(自然科学版), 2012, 11(1): 22–25.
Peng J, Liu W J, Yang Q. Convolution and integral representation of the subclasses Fp, kλ(α; a, c; h) (in chinese). Journal of Huaiyin Teachers College (Natural Science), 2012, 11(1): 22–25.
[11] 彭志刚. 具有缺项系数的几类解析函数族的性质. 数学物理学报, 2008, 28A(4): 661–669.
Peng Z G. The properties of several classes of analytic functions with missing coefficients. Acta Mathematica Scientia, 2008, 28A(4): 661–669.