数学物理学报  2017, Vol. 37 Issue (5): 917-930   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
李华惠
邵志强
压力消失时具有广义Chaplygin气体的Aw-Rascle交通模型Riemann解的极限
李华惠, 邵志强     
福州大学数学与计算机科学学院 福州 350116
摘要:该文研究带有广义Chaplygin气体的Aw-Rascle(AR)交通模型的黎曼问题.在广义Rankine-Hugoniot条件和熵条件下,证明了Delta激波存在唯一性.Delta激波有助于描述严重的交通拥堵.更重要的是,证实了广义Chaplygin气体的Aw-Rascle交通模型的黎曼解在交通压力消失时收敛于带相同的初值无压气体动力学系统的黎曼解.
关键词AR交通模型    黎曼解    广义R-H条件    Delta激波    Chaplygin压力    熵条件    
Vanishing Pressure Limit of Riemann Solutions to the Aw-Rascle Model for Generalized Chaplygin Gas
Li Huahui, Shao Zhiqiang     
College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116
Abstract: The Riemann problem for the Aw-Rascle (AR) traffic model with generalized Chaplygin gas is considered. Its first eigenvalue is genuinely nonlinear and the second eigenvalue is linearly degenerate, but the nonclassical solutions appear. The Riemann solutions are constructed, and the generalized Rankine-Hugoniot conditions and the δ-entropy condition are clarified. In particular, the existence and uniqueness of δ-shock waves are established under the generalized Rankine-Hugoniot conditions and entropy condition. The delta shock may be useful for description of the serious traffic jam. More importantly, it is proved that the limits of the Riemann solutions of the above AR traffic model are exactly those of the pressureless gas dynamics system with the same Riemann initial data as the traffic pressure vanishes.
Key words: Aw-Rascle traffic model     Generalized Chaplygin pressure     Riemann problem     Generalized Rankine-Hugoniot relation     Delta shock wave     Entropy condition    
1 引言

考虑守恒形式的交通流A-R模型

$ \left\{\begin{array}{ll}\rho_t+(\rho u)_x=0, \\ (\rho (u+p(\rho)))_t+(\rho u(u+p(\rho)))_x=0, \end{array}\right . $ (1)

其中, $\rho\geq 0$, $u\geq 0$分别表示交通流在马路上的车流密度和速度, $p$表示速度补偿.汽车交通的二阶模型是由Daganzo[10]提出, Aw和Rascle[1]为了补救二阶模型的不足提出了系统(1.1). A-R模型由Zhang[27]独立衍生.作为一个宏观系统, 系统(1.1)被广泛用于研究交通堵塞的形成和动态.

在文献[2]中, 通过把 $p$变成 $\varepsilon p $和含有密度约束 $0<\rho\leq\rho*$ $p(\rho)=(\frac{1}{\rho}-\frac{1}{\rho*})^{-\gamma}$ $(\gamma>0$)研究它的极限行为.函数 $p(\rho)$被定义为 $\rho\leq \rho^{*}$, 而且当 $\rho\rightarrow \rho^{*}$时, 它趋向于无穷, 所以最大密度的极限是不能达到的.假设 $\rho^{*}$成一个固定的常数, 即使它实际上是依靠速度.然而研究得到, 在 $\rho\leq\rho*$约束下, 当 $\rho$趋向于 $\rho*, $压力项变得活跃.最近, Shen和Sun[19]研究了放弃最大密度约束的极限行为, 即 $\rho=\rho*$不是奇特点.那么, 从双曲守恒律上看, 以下方程是有意义的

$ \left\{\begin{array}{ll}\rho_t+(\rho u)_x=0, \\ (\rho u+\varepsilon p(\rho))_t+(\rho u^2+\varepsilon up(\rho))_x=0, \end{array}\right . $ (1.2)

其中, 用 $ p(\rho)$替代系统(1.1)中的 $\rho p(\rho), $这是为了方便和简洁计算.

当压力消失时, 系统(1.2)的极限形式是以下无压气体动力学(PGD)模型

$ \left\{\begin{array}{ll}\rho_t+(\rho u)_x=0, \\ (\rho u)_t+(\rho u^2)_x=0.\end{array}\right . $ (1.3)

系统(1.3)被称为交通模型或零压Euler方程.它常用来描述自由粒子在低温状态下发生碰撞粘合在一起的运动[4]和宇宙中大尺寸结构的形成过程[20-21].

在2010年, Shen和Sun[19]研究了在方程组(1.2)中令 $\varepsilon\rightarrow 0$时, 它的黎曼解的极限, $p(\rho)$表示为

$ p(\rho)=\rho^{\gamma}, \, \, \, \, \, \gamma> 1. $ (1.4)

然而Shen和Sun[19]证实了当压力趋向于零时, 方程组(1.2)和(1.4)的黎曼解不收敛于方程组(1.3)的黎曼解.为了解决以上问题, 考虑另一压力方程(参考文献[15])

$ p(\rho)=-\frac{1}{\rho^{\alpha}}, \, \, \, \, \, \, \, \, \, \, 0<\alpha<1. $ (1.5)

Chaplygin气体 $(\alpha=1)$是由Chaplygin[6], Tsien[24]和von Karman[13]提出来的, 它是为了分析空气动力学中的飞机机翼在上升时所承受的压力, 然后适当引入的数学模型. Chaplygin气体拥有负压和出现在特定的宇宙学理论中.

含有压力方程(1.5)的方程组(1.1)与含有压力方程(1.5)的方程组(1.2)有本质上的区别.对于前者, 它是一个线性退化的系统, 即特征值是线性退化的; 于是经典基本波仅涉及接触间断.然而, 对于后者, 它有一个真正非线性特征值和一个线性退化的特征值;第一基本波是稀疏波或激波, 第二基本波是接触间断, 并且黎曼解出现Delta激波.

本文是为了解决方程组(1.2)和(1.5)的黎曼问题. Chaplygin气体模型被视为暗物质和暗能量的同一模型[12, 14-15].本文主要讨论A-R模型(1.2)和(1.5)在以下黎曼初值条件下的黎曼问题

$ (\rho, u)(x, 0)=(\rho_{\pm}, u_{\pm}), \, \, \, \, \, \, \, \, \, \pm{x}>0, $ (1.6)

其中 $\rho_{\pm} >0$, $u_{\pm} >0.$

本章的结构安排如下:第二节, 利用相平面中关于特征线分析的方法, 得到两种类型的黎曼解, 包含1-激波或1-稀疏波和2-接触间断.第三节, 在适当广义的Rankine-Hugoniot条件以及熵条件下, 建立了 $\delta$-激波的存在性以及唯一性.第四节, 当压力消去时, 分析黎曼解的极限行为.可得当 $\varepsilon\rightarrow 0$时, 方程组(1.2)和(1.5)的黎曼解的极限出现一个 $\delta$-激波和一个真空状态.更重要的是, 证实了当 $\varepsilon\rightarrow 0$时, 方程组(1.2)和(1.5)的黎曼解收敛于方程组(1.3)的黎曼解.

2 基本波和一些黎曼解

在这一节里, 我们将给出有关方程组(1.2)和(1.5)的基本的特征和对条件(1.6)下的黎曼问题进行求解.方程组(1.2)可简单地写成

$ \left(\begin{array}{cc}\rho\\u \end{array}\right)_t+\left( \begin{array}{cc} u~~& \rho \\[2mm] 0 ~~& u-\varepsilon p'(\rho)+\frac{\varepsilon p(\rho)}{\rho} \end{array}\right)\left(\begin{array}{cc}\rho\\u \end{array}\right)_x=0. $ (2.1)

由此可知相应的特征值为

$ \lambda_{1}=u-\frac{(\alpha+1)\varepsilon}{\rho^{\alpha+1}}, \, \, \, \, \, \, \, \, \, \, \, \, \lambda_{2}=u, $

与之对应的右特征向量为

$ \overrightarrow{r}_1=\bigg(1,-\frac{(\alpha+1)\varepsilon}{\rho^{\alpha+2}}\bigg)^T, \, \, \, \, \, \overrightarrow{r}_2=(1, 0 )^T. $

计算有

$ \bigtriangledown\lambda_1\cdot \overrightarrow{r_1}=\frac{\alpha(\alpha+1)\varepsilon}{\rho^{\alpha+2}}\neq0, \, \, \, \, \, \, \, \, \, \bigtriangledown\lambda_2\cdot \overrightarrow{r_2}\equiv 0. $

因此方程组(1.2)和(1.5)在 $\rho>0$为严格双曲型.由上可得当 $0<\alpha<1$时, $\lambda_{1}$是真正地非线性, $\lambda_{2}$是线性退化的.所以, 第一类的基本波是稀疏波或激波, 对于第二类的基本波是接触间断.

下面我们找出方程组(1.2)和(1.5)的相似解

$ (\rho, u)(x, t)=(\rho, u)(\xi), \, \, \, \, \xi=\frac{x}{t}. $

那么, 黎曼问题可转化成常微分方程的边值问题

$ \left\{\begin{array}{ll} -\xi\rho _{\xi}+(\rho u)_{\xi}=0, \\ -\xi(\rho u+\varepsilon p(\rho))_{\xi}+(\rho u^2+\varepsilon up(\rho))_{\xi}=0 \end{array}\right . $ (2.2)

$(\rho, u)(\pm\infty)=(\rho_{\pm}, u_{\pm}).$式子(2.2)等价于

$ \left( \begin{array}{cc} u-\xi~~&\rho \\ -\xi u-\xi\varepsilon p'(\rho)+ u^2+\varepsilon up'(\rho)~~&-\xi\rho+2\rho u+\varepsilon p(\rho) \\ \end{array}\right)\left(\begin{array}{cccc}\rho_{\xi}\\u_{\xi} \end{array}\right)=0. $ (2.3)

式子(2.3)除了包括常数解 $(\rho>0)$, 还包括了一个稀疏波, 它是含有 $(\rho, u)(\xi)$形式的连续解.那么, 当 $0<\alpha<1$, 对于任意给的左状态 $(\rho_{-}, u_{-}), $通过1-稀疏波连接状态 $(\rho_{-}, u_{-})$右边的可能的状态 $(\rho, u)$, 可写成

$ R(\rho_{-}, u_{-}): \left\{ \begin{array}{ll} \xi=u-\frac{(\alpha+1)\varepsilon}{\rho^{\alpha+1}}, \\[3mm] u-\frac{\varepsilon}{\rho^{\alpha+1}}=u_{-}-\frac{\varepsilon}{\rho^{\alpha+1}_{-}}, \\ u>u_{-}, \rho<\rho_{-}. \end{array} \right. $ (2.4)

对于已知的状态 $(\rho_{-}, u_{-}), $考虑对于全部可能的状态 $(\rho, u)$是通过1-激波与状态 $(\rho_{-}, u_{-})$右边连接的.如果 $\xi=\sigma$是一个边界的间断解, 那么R-H条件可写成

$ \left\{ \begin{array}{ll} \displaystyle -\sigma[\rho] +[\rho u]=0, \\ \displaystyle -\sigma[\rho u+\varepsilon p(\rho)] +[\rho u^2+\varepsilon up(\rho)]=0, \end{array} \right. $ (2.5)

其中 $[\rho]=\rho_{+}-\rho_{-}, $ $\rho_{+}$ $\rho_{-}$分别表示函数 $\rho$在间断曲线左侧和右侧的函数值, $\sigma$表示间断曲线的速度.

通过分析计算可得, Lax-激波的不等式蕴含了 $\rho>\rho_{-}.$那么当 $0<\alpha<1$, 对于任意给的左边状态 $(\rho_{-}, u_{-}), $对于全部可能的状态是通过1-激波与状态 $(\rho, u)$右边, 形式如下

$ S(\rho_{-}, u_{-}):\left\{ \begin{array}{ll} \sigma=u+\frac{\varepsilon \rho_{-}(\rho^{-\alpha-1}-\rho_{-}^{-\alpha-1})}{\rho-\rho_{-}} =u_{-}+\frac{\varepsilon \rho(\rho^{-\alpha-1}-\rho_{-}^{-\alpha-1})}{\rho-\rho_{-}}, \\[3mm] u-\frac{\varepsilon}{\rho^{\alpha+1}}=u_{-}-\frac{\varepsilon}{\rho_{-}^{\alpha+1}}, \\[2mm] u<u_{-}, \rho>\rho_{-}. \end{array} \right. $ (2.6)

方程(2.6)的第二个式子对 $u$关于 $\rho$求导, 可得

$ u_{\rho}=-\frac{(\alpha+1)\varepsilon}{\rho^{(\alpha+2)}}<0, \, \, \, \, u_{\rho\rho}=\frac{(\alpha+1)(\alpha+2)\varepsilon}{\rho^{\alpha+3}}>0. $

因此1-激波的曲线是单调递减的、凸的, 在 $(\rho, u)$平面上的渐近线为 $u=u_{-}-\frac{\varepsilon}{\rho^{\alpha+1}_{-}}$.由于 $\lambda_{2}$是线性退化的, 对于任意给的左边状态 $(\rho_{-}, u_{-})$, 我们讨论所有可能状态 $(\rho, u)$, 它是通过一个接触间断去连接状态 $(\rho_{-}, u_{-})$右边当且仅当

$ J:\xi=u=u_{-}. $ (2.7)
图 1 $(\rho, u)$-plane

于是, 我们可以总结对于任意给的左边状态 $(\rho_{-}, u_{-})$, 与右边连接的状态有:1-稀疏波曲线, 1-激波曲线和2-接触间断曲线.在相平面中, 这些曲线将分成三个区域 $I=\Big\{(\rho, u)\Big|u<u_{-}-\frac{\varepsilon}{\rho_{-}^{\alpha +1}}\Big\}, $ $II=\Big\{(\rho, u)\Big|u_{-}-\frac{\varepsilon}{\rho_{-}^{\alpha +1 }}<u<u_{-}\Big\}$ $III=\Big\{(\rho, u)\Big|u>u_{-}\Big\}.$根据右边的状态 $(\rho_{+}, u_{+})$在不同的区域, 构造出唯一的全局的黎曼解是与常状态连接 $(\rho_{\pm}, u_{\pm})$的, 如下

$ 1.~ (\rho_{+}, u_{+})\in II(\rho_{-}, u_{-}):S+J;\quad 2.~ (\rho_{+}, u_{+})\in III(\rho_{-}, u_{-}):R+J. $

以上黎曼解中, 中间的常状态 $(\rho_{*}, u_{*})$可以表示为

$ u_{+}=u_{*}, \, \, \, \, \, u_{*}-\frac{\varepsilon}{\rho_{*}^{\alpha+1}}=u_{-}-\frac{\varepsilon}{\rho_{-}^{\alpha+1}} $

$ (\rho_{*}, u_{*})=\bigg(\bigg( \frac{\varepsilon \rho_{-}^{\alpha+1}}{(u_{+}-u_{-})\rho_{-}^{\alpha+1}+\varepsilon}\bigg)^{\frac{1}{\alpha+1}} , u_{+}\bigg). $
3 Delta激波解

然而, 对于 $(\rho_{+}, u_{+})\in I(\rho_{-}, u_{-})$的情形, 黎曼解不能由经典基本波构造出来.事实上, 来自初值的特征线将在区域 $\Omega$重叠.所以, 奇性出现在区域 $\Omega$上.简单得知, 奇性不可能是有限振幅的跳跃, 因为在有界跳跃上时, 奇性是不满足于R-H条件的.总而言之, 不可能有这种形式的解, 是分段光滑有界的.所以, 具有权重的 $\delta$-测度的黎曼解将被构造出.

接下来, 我们将定义方程组(1.2)和(1.5)的广义解, 可参考相关文献[12, 15, 17, 22, 25].

假设 $\Gamma=\{\gamma_{i}:i\in I\}$是表示在闭的上半平面 $\{(x, t):x\in R, t\in [0, +\infty)\}\in {\Bbb R}^2$上的一个图像, 它包括了光滑的曲线 $\gamma_{i}=\{(x, t):S_{i}(x, t)=0\}, \, i\in I$, 其中 $I$表示一个有限的集合.令 $I_{0}$表示 $I$的子集, 使得对于 $i\in I_{0}$的曲线 $\gamma_{i}$的起点在 $x$-轴上; $\Gamma_{0}=\{x_{k}^{0}:i\in I_{0}\}$表示曲线 $\gamma_{i}$, $i\in I_{0}$, 的全部初始点集合.

下面将讨论 $\delta$-激波类型的初值 $(\rho^{0}(x), u^{0}(x))$, 其中

$ \rho^{0}(x)=\rho_{0}(x)+e^{0}\delta (\Gamma_{0}), $

$u^{0}, \rho_{0}\in L^{\infty}({\Bbb R}\times {\Bbb R}_{+})$, $e^{0}\delta (\Gamma_{0}) =\sum\limits_{i\in I}e^{0}\delta (x-x_{i}^{0})$和当 $i\in I_{0}$时, $e_{i}^{0}$是常数.此外, 对于(1.2)式的压力方程 $p(\rho)=-\frac{1}{\rho^{\alpha}}$, 关于 $\rho$, 它是非线性的, 可以表示为

$ \begin{eqnarray} p^{0}(x, t)=-\frac{1}{\rho_{0}^{\alpha}}, \end{eqnarray} $ (3.1)

其中可注意到 $\delta$-测度对压力没有影响.

定义3.1  一对分布 $(\rho(x, t), u(x, t))$以及图像 $\Gamma$, 其中 $\rho(x, t)$是以下形式之和

$ \rho(x, t)=\widehat{\rho}(x, t)+e(x, t)\delta(\Gamma)\, \, \, \, \mbox{和}\, \, \, \, p(x, t)=-\frac {1}{(\widehat{\rho }(x, t))^{\alpha }}, $

$u, \widehat{\rho}\in L^{\infty}({\Bbb R}\times {\Bbb R}_{+})$且对于 $i\in I$, $e(x, t)\delta(\Gamma)=\sum\limits_{i\in I}e_{i}(x, t)\delta (\gamma_{i})$, $e_{i}(x, t)\in C(\Gamma)$, 它被称为方程组(1.2)广义的 $\delta$-激波类型解, 它含有 $\delta$-激波类型的初值 $(\rho^{0}(x), u^{0}(x))$, 若对任意的检验函数 $\phi(x, t)\in C^\infty_0({\Bbb R}\times {\Bbb R}_{+})$都有以下积分等式成立

$ \begin{eqnarray} && \int_{{\Bbb R}_{+}}\int_{\Bbb R}\bigg(\widehat{\rho}\phi_{t} +\widehat{\rho}u \phi_{x}\bigg){\rm d}x{\rm d}t +\sum\limits_{i\in I}\int_{\gamma_{i}}e_{i}(x, t) \frac{{\rm d} \phi(x(t), t)}{{\rm d}l}{\rm d}l \nonumber\\ &&+\int_{\Bbb R}\rho_{0}(x) \phi (x, 0){\rm d}x+\sum\limits_{i\in I_{0}}e_{i}^{0} \phi(x_{i}^{0}, 0)=0, \nonumber\\ && \int_{{\Bbb R}_{+}}\int_{\Bbb R}\bigg(\big(\widehat{\rho} u+\varepsilon p\big)\phi_{t}+\big(\widehat{\rho} u^2+\varepsilon up\big)\phi_{x}\bigg){\rm d}x{\rm d}t +\\ &&\sum\limits_{i\in I}\int_{\gamma_{i}}e_{i}(x, t) u_{\delta}(x, t)\frac{{\rm d}\phi(x, t)}{{\rm d}l}{\rm d}l \\ &&+\int_{\Bbb R}\big(\rho_{0}(x)u^{0}(x)+\varepsilon p(\rho_{0}(x))\big)\phi(x, 0){\rm d}x+\sum\limits_{i\in I_{0}}e_{i}^{0}u_{\delta}^{0}\big(x_{i}^{0}\big)\phi(x_{i}^{0}, 0)=0, \end{eqnarray} $ (3.2)

其中 $\frac{\partial\phi(x, t)}{\partial l}$表示在图像 $\Gamma$上切向导数, $\int_{\gamma_{i}}{\rm d}l$表示在曲线 $\gamma_{i}$上一个线积分, $u_{\delta}(x, t)$表示 $\delta$-激波的速度, 有

$ u_{\delta}^{0}(x_{i}^{0})=u_{\delta}(x_{i}^{0}, 0)=-\frac{(S_{i})_{t}}{(S_{i})_{x}}\bigg|_{(x_{i}^{0}, 0)}, \, \, \, i\in I_{0}. $

定理3.1  对柯西问题(1.2)和(1.5), 当 $(\rho_{+}, u_{+})\in I(\rho_{-}, u_{-})$, 问题(1.2)有一个 $\delta$-激波类型的解

$ \begin{eqnarray*} u(x, t)&=&u_{-}+[u]H(x-x(t)), \\ \rho(x, t)&=&\rho_{-}+[\rho]H(x-x(t))+e(t)\delta(x-x(t)), \end{eqnarray*} $

它在定义3.1中积分等式是成立的, 其中 $\Gamma=\{(x, t):x=x(t)=\sigma_{\delta}t, \, t\geq0\}$, $\widehat{\rho}(x, t)=\rho_{-}+[\rho]H(x-x(t)), $

$ \int_{\Gamma}e(x, t)\frac{\partial\phi(x, t)}{\partial l}{\rm d}l=\int_{0}^{+\infty}e(x, t)\frac{{\rm d}\phi(x, t)}{{\rm d}t}{\rm d}t. $

并且 $ H(x)$是Heaviside函数

$ H(x)=\left\{\begin{array}{ll} 0, \, \, \, \, \mbox{当}\, \, \, x<0, \\ 1, \, \, \, \, \mbox{当} \, \, \, x>0. \end{array}\right. $

另外

$ \begin{eqnarray*} e(t)&=&\sigma_{\delta}[\rho]t-[\rho u]t, \\ e(t)\sigma_{\delta}&=&\sigma_{\delta}[\rho u+\varepsilon p(\rho)]t-[\rho u^2+\varepsilon u p(\rho)]t. \end{eqnarray*} $

  下面将验证构造出来的 $\delta$-测度解在分布意义下是满足定义3.1的, 即

$ \int_{{\Bbb R}_{+}}\int_{\Bbb R}\bigg(\widehat{\rho}\phi_{t}+\widehat{\rho}u \phi_{x}\bigg){\rm d}x{\rm d}t +\int_{0}^{+\infty}e(t) \frac{d \phi(x(t), t)}{{\rm d}t}{\rm d}t+\\ \int_{\Bbb R}\rho_{0}(x)\phi(x, 0){\rm d}x=0, $ (3.3)
$ \int_{{\Bbb R}_{+}}\int_{\Bbb R}\bigg(\big(\widehat{\rho} u+\varepsilon p\big)\phi_{t}+\big(\widehat{\rho} u^2+\varepsilon up\big)\phi_{x}\bigg){\rm d}x{\rm d}t +\\ \int_{0}^{+\infty}u_{\delta}e(t)\frac{{\rm d}\phi(x(t), t)}{{\rm d}t}{\rm d}t \\ +\int_{\Bbb R}(\rho_{0}(x)u^{0}(x)+\varepsilon p(\rho_{0}(x)))\phi(x, 0){\rm d}x=0, $ (3.4)

对于全部检验函数 $\phi(x, t)\in \wp({\Bbb R}\times {\Bbb R}_{+})$都是成立的, 在此 $u_{\delta}=\sigma_{\delta}$, 其中 $\rho_{0}(x)=\rho_{-}+[\rho]H(x)$ $u^{0}(x)=u_{-}+[u]H(x)$.

$A$表示(3.4)式的左边, 则有

$ \begin{eqnarray} A&=&\int_{0}^{+\infty}\int_{-\infty}^{x(t)}\Big((\rho_{-}u_{-}+ \varepsilon p(\rho_{-}))\phi_{t}+(\rho_{-}u_{-}^{2}+\varepsilon u_{-} p(\rho_{-}))\phi_{x}\Big){\rm d}x{\rm d}t \\ &&+\int_{0}^{+\infty}\int_{x(t)}^{+\infty}\Big((\rho_{+}u_{+}+ \varepsilon p(\rho_{+}))\phi_{t}+(\rho_{+}u_{+}^{2}+\varepsilon u_{+} p(\rho_{+}))\phi_{x}\Big){\rm d}x{\rm d}t \\ &&+\int_{0}^{+\infty} \sigma_{\delta}e(t) \frac{d \phi(x(t), t)}{{\rm d}t}{\rm d}t +\int_{-\infty}^{0}(\rho_{-}u_{-}+\varepsilon p(\rho_{-}))\phi(x, 0){\rm d}x \\ && +\int_{0}^{+\infty}(\rho_{+}u_{+}+\varepsilon p(\rho_{+}))\phi(x, 0){\rm d}x. \end{eqnarray} $ (3.5)

不失一般性, 假设 $\sigma_{\delta}>0$, 那么(3.5)式的右边第一项等于

$ \int_{0}^{+\infty}\int_{-\infty}^{0}(\rho_{-}u_{-}+\varepsilon p(\rho_{-}))\phi_{t}{\rm d}x{\rm d}t + \int_{0}^{+\\ \infty}\int_{0}^{x(t)}(\rho_{-}u_{-}+\varepsilon p(\rho_{-}))\phi_{t}{\rm d}x{\rm d}t \\ +\int_{0}^{+\infty}\int_{-\infty}^{x(t)}(\rho_{-}u_{-}^{2}+\varepsilon u_{-}p(\rho_{-}))\phi_{x}{\rm d}x{\rm d}t \\ =-\int_{-\infty}^{0}(\rho_{-}u_{-}+\varepsilon p(\rho_{-}))\phi(x, 0){\rm d}x+\\ \int_{0}^{+\infty}\int_{0}^{x(t)}(\rho_{-}u_{-}+\varepsilon p(\rho_{-}))\phi_{t}{\rm d}x{\rm d}t\\ +\int_{0}^{+\infty}(\rho_{-}u_{-}^{2}+\varepsilon u_{-}p(\rho_{-}))\phi(x(t), t){\rm d}t \\ =-\int_{-\infty}^{0}(\rho_{-}u_{-}+\varepsilon p(\rho_{-}))\phi(x, 0){\rm d}x+\\ \int_{0}^{+\infty}{\rm d}x\int_{t(x)}^{+\infty}(\rho_{-}u_{-}+\varepsilon p(\rho_{-}))\phi_{t}{\rm d}t \\ +\int_{0}^{+\infty}(\rho_{-}u_{-}^{2}+\varepsilon u_{-}p(\rho_{-}))\phi(x(t), t)){\rm d}t \\ =-\int_{-\infty}^{0}(\rho_{-}u_{-}+\varepsilon p(\rho_{-}))\phi(x, 0){\rm d}x-\\ \int_{0}^{+\infty}(\rho_{-}u_{-}+\varepsilon p(\rho_{-}))\phi(x, t(x)){\rm d}x \\ +\int_{0}^{+\infty}\frac{\rho_{-}u_{-}^{2}+\varepsilon u_{-}p(\rho_{-})}{\sigma_{\delta}}\phi(x, t(x)){\rm d}x \\ =-\int_{-\infty}^{0}(\rho_{-}u_{-}+\varepsilon p(\rho_{-}))\phi(x, 0){\rm d}x +\\ \int_{0}^{+\infty}(\rho_{-}u_{-}+\varepsilon p(\rho_{-}))\bigg(\frac{u_{-}}{\sigma_{\delta}}-1\bigg)\phi(x, t(x)){\rm d}x .\quad $ (3.6)

类似地, (3.5)式的右边第二项等于

$ \int_{0}^{+\infty}{\rm d}x\int^{t(x)}_{0}(\rho_{+}u_{+}+\varepsilon p(\rho_{+}))\phi_{t}{\rm d}t\\ -\int_{0}^{+\infty}\frac{\rho_{+}u_{+}^{2}+\varepsilon u_{+}p(\rho_{+})}{\sigma_{\delta}} \phi(x, t(x)){\rm d}x \\ =-\int_{0}^{+\infty}(\rho_{+}u_{+}+\varepsilon p(\rho_{+}))\phi(x, 0){\rm d}x+\\ \int_{0}^{+\infty}(\rho_{+}u_{+}+\varepsilon p(\rho_{+}))\bigg(1-\frac{u_{+}}{\sigma_{\delta}}\bigg)\phi(x, t(x)){\rm d}x.\quad $ (3.7)

(3.5)式的右边第三项等于

$ \begin{eqnarray} &&\big(\sigma_{\delta}[\rho u+\varepsilon p]-[\rho u^{2}+\varepsilon u p]\big)t\phi(x(t), t)\Big|_{0}^{+\infty}\\ &&-\big(\sigma_{\delta}[\rho u+\varepsilon p]-[\rho u^{2}+\varepsilon u p]\big)\int_{0}^{+\infty}\phi(x(t), t){\rm d}t \\ &=&-\frac{\big(\sigma_{\delta}[\rho u+\varepsilon p]-[\rho u^{2}+\varepsilon u p]\big)}{\sigma_{\delta}} \int_{0}^{+\infty}\phi(x, t(x)){\rm d}x. \end{eqnarray} $ (3.8)

结合上述式子(3.5)-(3.8), 有

$ A=0. $

类似的方法同样可验证(3.3)式.

根据定义3.1, 类似定理3.1的证明, 我们得到方程组(1.2)的 $\delta$-激波类型的解也满足广义的R-H条件.

定理3.2  假设光滑曲线 $\Gamma=\{(x, t):x=x(t)\}$将区域 $\Omega\subset {\Bbb R}\times {\Bbb R}_{+}$划分为左右两个区域 $\Omega_{\pm}=\{(x, t):\pm(x-x(t))>0\}$, $(\rho(x, t), u(x, t))$表示方程组(1.2)广义的 $\delta$-激波类型的解, 在区域 $\Omega_{\pm}$上的光滑函数 $\widehat{\rho}(x, t), $ $u(x, t)$在曲线 $\Gamma$上有单侧极限 $\widehat{\rho}_{\pm}$, $u_{\pm}$.那么对于 $\delta$-激波的广义R-H条件为

$ \begin{eqnarray}\left\{ \begin{array}{ll} \displaystyle \frac{{\rm d}e(t)}{{\rm d}t}=\Big(\dot{x}(t)[\rho]-[\rho u] \Big)\Big|_{x=x(t)}, \\ \displaystyle \frac{{\rm d}(e(t)\dot{x}(t))}{{\rm d}t}= \Big(\dot{x}(t)[\rho u+\varepsilon p(\rho)]-[\rho u^2+\varepsilon u p(\rho)] \Big)\Big|_{x=x(t)}, \end{array} \right. \end{eqnarray} $ (3.9)

其中 $e(t)\dot{=}e(x(t), t)$ $\dot{x}(t)=\frac{{\rm d}x}{{\rm d}t}.$

此外, 为了能够保证解的唯一性, 间断线也应该满足下面的熵条件

$ \begin{eqnarray} \lambda_{2}(\rho_{+}, u_{+})<\sigma_{\delta}<\lambda_{1}(\rho_{-}, u_{-}), \end{eqnarray} $ (3.10)

这说明了在间断线两侧的全部特征线是都进入的.这时, 黎曼问题可以转化为解决常微分方程(3.9), 带有以下初值

$ t=0, \, \, \, \, x(0)=0, \, \, \, w(0)=0. $

通过(3.9)式可有以下代数方程

$ \begin{eqnarray} e(t)&=&\sigma[\rho]t-[\rho u]t, \\ e(t)\sigma&=&\sigma[\rho u+\varepsilon p(\rho)]t-[\rho u^2+\varepsilon u p(\rho)]t, \end{eqnarray} $ (3.11)

那么有

$ \begin{eqnarray} [\rho]\sigma^2-\bigg([\rho u]+\bigg[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\bigg]\bigg)\sigma+\bigg[\rho u^2-\frac{\varepsilon u}{\rho^{\alpha}}\bigg]=0. \end{eqnarray} $ (3.12)

对于 $[\rho]=0$, (3.12)式是一个关于 $\sigma$的线性方程, 我们有

$ \begin{eqnarray} &&\sigma=\frac{\Big[\rho u^2-\frac{\varepsilon u}{\rho^{\alpha}}\Big]}{[\rho u]+\Big[\rho u-\frac{\varepsilon }{\rho^{\alpha}}\Big]}, ~~x(t)=\frac{\Big[\rho u^2-\frac{\varepsilon u}{\rho^{\alpha}}\Big]}{[\rho u]+\Big[\rho u-\frac{\varepsilon }{\rho^{\alpha}}\Big]}t, \\ &&e(t)=-[\rho u]t. \end{eqnarray} $ (3.13)

对于 $[\rho]\neq0$, (3.12)式是一个关于 $\sigma$的二次方程, 判别式可写成

$ \begin{eqnarray*} \Delta&=&\bigg([\rho u]+\bigg[\rho u-\frac{\varepsilon }{\rho^{\alpha}}\bigg]\bigg)^2-4[\rho]\bigg[\rho u^2-\frac{\varepsilon u}{\rho^{\alpha}}\bigg] \\ &=&4\rho_{-} \rho_{+}(u_{-}-u_{+})\bigg(\big(u_{-}-\frac{\varepsilon}{\rho_{-}^{\alpha+1}}-u_{+}\big) +\frac{\varepsilon}{\rho_{+}^{\alpha+1}}\bigg)+\bigg(\frac{\varepsilon}{\rho_{+}^{\alpha}}-\frac{\varepsilon}{\rho_{-}^{\alpha}}\bigg)^2. \end{eqnarray*} $

因为任意状态 $(\rho_{+}, u_{+})\in I(\rho_{-}, u_{-})$, 有

$ u_{+}<u_{-}-\frac{\varepsilon }{\rho_{-}^{\alpha +1}}, $

那么可得

$ u_{+}<u_{-}, $

从而

$ \begin{eqnarray} \Delta>0. \end{eqnarray} $ (3.14)

对(3.12)式进行求解, 有

$ \begin{eqnarray} &&\sigma=\frac{[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]+\sqrt\Delta}{2[\rho]}, \, \, \, \, \, x(t)=\frac{[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]+\sqrt\Delta}{2[\rho]}t, \\ &&e(t)=\frac{-[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]+\sqrt\Delta}{2}t \end{eqnarray} $ (3.15)

$ \begin{eqnarray} &&\sigma=\frac{[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]-\sqrt\Delta}{2[\rho]}, \, \, \, \, \, x(t)=\frac{[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]-\sqrt\Delta}{2[\rho]}t, \\ &&e(t)=\frac{-[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]-\sqrt\Delta}{2}t. \end{eqnarray} $ (3.16)

简单分析计算, 由 $\varepsilon$足够小, 有

$ \begin{eqnarray*} &&[\rho u]+\bigg[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\bigg]-2[\rho]\bigg(u_{-}-\frac{(\alpha+1) \varepsilon}{\rho_{-}^{\alpha+1}}\bigg) \\ &=&[\rho u]+\bigg[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\bigg]-2[\rho]\bigg(u_{-}-\frac{\varepsilon}{\rho_{-}^{\alpha+1}}\bigg)+\frac{2\alpha\varepsilon(\rho_{+}-\rho_{-})} {\rho_{-}^{\alpha+1}} \\ &=&-\rho_{-}\bigg(u_{-}-\big(u_{-}-\frac{ \varepsilon}{\rho_{-}^{\alpha+1}}\big)\bigg)-\rho_{+}\bigg(u_{-}-\frac{ \varepsilon}{\rho_{-}^{\alpha+1}}-u_{+}\bigg) \\ &&-\rho_{+}\bigg(\big(u_{-}-\frac{ \varepsilon}{\rho_{-}^{\alpha+1}}-u_{+}\big)+\frac{\varepsilon}{\rho_{+}^{\alpha+1}}\bigg)+\frac{2\alpha\varepsilon(\rho_{+}-\rho_{-})} {\rho_{-}^{\alpha+1}}<0, \\ &&\frac{\bigg([\rho u]+\big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\big]-2[\rho]\big(u_{-}-\frac{(\alpha+1) \varepsilon}{\rho_{-}^{\alpha+1}}\big)\bigg)^{2}-\Delta}{2[\rho]} \\ &=&-\frac{2\alpha(\alpha+1)\varepsilon^{2} }{\rho_{-}^{2\alpha+1}}+2\rho_{+}\bigg(\big(u_{-}-\frac{\varepsilon} {\rho_{-}^{\alpha+1}}-u_{+}\big)-\big(\frac{\alpha\varepsilon} {\rho_{-}^{\alpha+1}}-\frac{\varepsilon}{\rho_{+}^{\alpha+1}}\big)\bigg) \\ &&\times \bigg(\big(u_{-}-\frac{\varepsilon}{\rho_{-}^{\alpha+1}}-u_{+}\big)-\frac{\alpha\varepsilon}{\rho_{-}^{\alpha+1}}\bigg)>0 \end{eqnarray*} $

$ [\rho u]+\bigg[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\bigg]-2[\rho]u_{+}=-\rho_{-}\bigg(u_{-}-\frac{\varepsilon}{\rho_{-}^{\alpha+1}}-u_{+} \bigg)-\rho_{-}(u_{-}-u_{+})-\frac{\varepsilon}{\rho_{+}^{\alpha}}<0, \\ \frac{\Big([\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big] -2[\rho]u_{+}\Big)^{2}-\Delta}{2[\rho]} =-2\rho_{-}(u_{-}-u_{+})\bigg(u_{-}-\frac{\varepsilon}{\rho_{-}^{\alpha+1}}-u_{+}\bigg)<0. $

由此, 对于解(3.15), 有

$ \sigma-\bigg(u_{-}-\frac{(\alpha+1)\varepsilon}{\rho_{-}^{\alpha+1}}\bigg) =\frac{[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]+\sqrt\Delta}{2[\rho]}-\bigg(u_{-}-\frac{(\alpha+1)\varepsilon}{\rho_{-}^{\alpha+1}}\bigg) \\ =\frac{\Big([\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]-2[\rho]\Big(u_{-} -\frac{(\alpha+1)\varepsilon}{\rho_{-}^{\alpha+1}}\Big)\Big)^{2} -\Delta}{2[\rho]\Big([\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]-2[\rho]\Big(u_{-} -\frac{(\alpha+1)\varepsilon}{\rho_{-}^{\alpha+1}}\Big)-\sqrt\Delta\Big)}<0 $ (3.17)

$ \begin{eqnarray} \sigma-u_{+}&=&\frac{[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big] +\sqrt\Delta}{2[\rho]}-u_{+} \\ &=&\frac{\Big([\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big] -2[\rho]u_{+}\Big)^{2}-\Delta}{2[\rho] \Big([\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big] -2[\rho]u_{+}-\sqrt\Delta\Big)}>0, \end{eqnarray} $ (3.18)

这说明熵条件(3.10)是有效的.对于解(3.16), 当 $\rho_{-}<\rho_{+}$时, 有

$ \begin{eqnarray} \sigma-u_{+}=\frac{[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]- \sqrt\Delta}{2[\rho]}-u_{+}\\ =\frac{[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]-2[\rho] u_{+}-\sqrt\Delta}{2[\rho]}<0. \end{eqnarray} $ (3.19)

$\rho_{-}>\rho_{+}$时, 有

$ \begin{eqnarray*} &&[\rho u]+\bigg[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\bigg]-2[\rho]\bigg(u_{-}-\frac{(\alpha+1) \varepsilon}{\rho_{-}^{\alpha+1}}\bigg) \\ &<&[\rho u]+\bigg[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\bigg]-2[\rho]\bigg(u_{-}-\frac{\varepsilon}{\rho_{-}^{\alpha+1}}\bigg) \\ &=&-\rho_{-}\bigg(u_{-}-\bigg(u_{-}-\frac{ \varepsilon}{\rho_{-}^{\alpha+1}}\bigg)\bigg)-\rho_{+}\bigg(u_{-}-\frac{ \varepsilon}{\rho_{-}^{\alpha+1}}-u_{+}\bigg) \\ &&-\rho_{+}\bigg(\bigg(u_{-}-\frac{ \varepsilon}{\rho_{-}^{\alpha+1}}-u_{+}\bigg)+\frac{\varepsilon}{\rho_{+}^{\alpha+1}}\bigg)<0, \end{eqnarray*} $

因此

$ \sigma-\bigg(u_{-}-\frac{(\alpha+1)\varepsilon}{\rho_{-}^{\alpha+1}}\bigg) =\frac{[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big]-\sqrt\Delta}{2[\rho]}-\bigg(u_{-}-\frac{(\alpha+1)\varepsilon}{\rho_{-}^{\alpha+1}}\bigg) \\ =\frac{[\rho u]+\Big[\rho u-\frac{\varepsilon}{\rho^{\alpha}}\Big] -2[\rho]\Big(u_{-}-\frac{(\alpha+1)\varepsilon} {\rho_{-}^{\alpha+1}}\Big)-\sqrt\Delta}{2[\rho]}>0. $ (3.20)

这说明解(3.16)是不满足熵条件(3.10)的.于是我们有下面的结论.

定理3.3  当 $(\rho_{+}, u_{+})\in I (\rho_{-}, u_{-}), $黎曼问题(1.2), (1.5)和(1.6)确有且只有一个熵解, 其测度形式为

$ (\rho, u)(x, t)= \left\{ \begin{array}{ll} \displaystyle (\rho_{-}, u_{-}), \, \, \, \, \, &x<\sigma t, \\ \displaystyle \big(e(t)\delta(x-\sigma t), \sigma\big), \, \, \, \, &x=\sigma t, \\ \displaystyle (\rho_{+}, u_{+}), \, \, \, \, \, &x>\sigma t, \end{array} \right. $ (3.21)

其中, 对于 $[\rho]=0$, $\sigma$ $e(t)$由(3.13)式表示; 对于 $[\rho]\neq0$, $\sigma$ $e(t)$由(3.15)式表示.

定理3.4  黎曼问题(1.2), (1.5)和(1.6)存在唯一熵解, 当 $(\rho_{+}, u_{+})\in II (\rho_{-}, u_{-})$时, 全局的解包含了一个1-激波和一个2-接触间断, 当 $(\rho_{+}, u_{+})\in III (\rho_{-}, u_{-})$时, 包含了一个1-稀疏波和一个2-接触间断, 当 $(\rho_{+}, u_{+})\in I (\rho_{-}, u_{-})$时, 包含了 $\delta$-激波.

4 压力消失时黎曼解的极限

在这一节中, 讨论压力消失时, 广义Chaplygin气体的交通模型的黎曼解的极限.接下来, 按照 $u_{-}$ $u_{+}$的大小分以下三种情况讨论.

引理4.1  若 $u_{+}<u_{-}$时, 那么存在一个 $\varepsilon_{0}$, 使得 $(\rho_{+}, u_{+})\in I $, 其中 $0<\varepsilon<\varepsilon_{0}.$

  由

$ u_{+}<u_{-}-\frac{ \varepsilon}{\rho_{-}^{\alpha+1}}, $

那么可得 $(\rho_{+}, u_{+})\in I$, 因而断定 $\varepsilon_{0}=(u_{-}-u_{+})\rho_{-}^{\alpha+1}.$

定理4.1  对于情形 $ u_{+}<u_{-}$, 假设 $(\rho^{\varepsilon}, u^{\varepsilon})(x, t)$是方程组(1.2), (1.5)和(1.6)的黎曼解, 其中 $0<\varepsilon<\varepsilon_{0}$, 那么令 $\varepsilon \to 0$, 黎曼解的极限可表示为

$ (\rho, u)(x, t)= \left\{ \begin{array}{ll} \displaystyle (\rho_{-}, u_{-}), \, \, \, \, \, &x<x(t), \\ \displaystyle \big(e(t)\delta(x-x(t)), u_{\delta}\big), \, \, \, \, \, &x=x(t), \\ \displaystyle (\rho_{+}, u_{+}), \, \, \, \, \, &x>x(t), \end{array} \right. $ (4.1)

它恰好是PGD系统(1.3)带相同的黎曼初值(1.6)的解.其中

$ \displaystyle \big(x(t), u_{\delta}, e(t)\big) =\\ \bigg(\frac{\sqrt{\rho_{-}}u_{-}+\sqrt{\rho_{+}}u_{+}}{\sqrt{\rho_{-}}+\sqrt{\rho_{+}}}t, \frac{\sqrt{\rho_{-}}u_{-}+\sqrt{\rho_{+}}u_{+}}{\sqrt{\rho_{-}}+\sqrt{\rho_{+}}}, \sqrt{\rho_{-}\rho_{+}} (u_{-}-u_{+})t\bigg). $ (4.2)

  对于 $0<\varepsilon<\varepsilon_{0}$, 方程组(1.2)和(1.5)的黎曼解可表示为

$ (\rho^{\varepsilon}, u^{\varepsilon})(x, t) \left\{ \begin{array}{ll} \displaystyle (\rho_{-}, u_{-}), \, \, \, \, \, &x<x^{\varepsilon}(t), \\ \displaystyle \big(e^{\varepsilon}(t)\delta(x-x ^{\varepsilon}(t)), u_{\delta}^{\varepsilon}\big), \, \, \, \, \, &x=x^{\varepsilon}(t), \\ \displaystyle (\rho_{+}, u_{+}), \, \, \, \, \, &x>x^{\varepsilon}(t), \end{array} \right. $ (4.3)

其中, $(x^{\varepsilon}(t), u_{\delta}^{\varepsilon}, e^{\varepsilon}(t))$是由(3.13)或(3.15)式定义的.令 $\varepsilon \to 0$, 有

$ (x(t), u_{\delta}, e(t))=\lim\limits_{\varepsilon\to 0}(x^{\varepsilon}(t), u_{\delta}^{\varepsilon}, e^{\varepsilon}(t)). $ (4.4)

将(4.3)和(4.4)式结合起来, 由此得到

$ (\rho, u)(x, t)=\lim\limits_{\varepsilon \to 0}(\rho^{\varepsilon}, u^{\varepsilon})(x, t). $

证毕.

定理4.2  对于情形 $ u_{+}>u_{-}$, 假设 $(\rho^{\varepsilon}, u^{\varepsilon})(x, t) $是方程组(1.2)和(1.5)的黎曼解, 其中 $0<\varepsilon<\varepsilon_{0}$.那么对于 $\varepsilon \to 0$的黎曼解极限可表示为

$ (\rho, u)(x, t)= \left\{ \begin{array}{ll} \displaystyle (\rho_{-}, u_{-}), \, \, \, \, \, &\xi<u_{-}, \\ \displaystyle vacuum, \, \, \, \, \, &u_{-}<\xi<u_{+}, \\ \displaystyle (\rho_{+}, u_{+}), \, \, \, \, \, &\xi>u_{+}, \end{array} \right. $ (4.5)

它恰好是PGD系统(1.3)带相同的黎曼初值(1.6)的解.

  对于任意给定的 $\varepsilon>0$, 方程组(1.2)和(1.5)的黎曼解是由一1-稀疏波 $R$紧随后的2-接触间断 $J$组成, 除两个常数状态 $(\rho_{-}, u_{-})$ $(\rho_{+}, u_{+})$以外, 还包括了中间的常数状态 $(\rho_{*}^{\varepsilon}, u_{*}^{\varepsilon})$, 其中

$ (\rho_{*}^{\varepsilon}, u_{*}^{\varepsilon})= \bigg(\bigg(\frac{\varepsilon \rho_{-}^{\alpha+1}}{(u_{+}-u_{-})\rho_{-}^{\alpha+1}+\varepsilon}\bigg)^{\frac{1}{\alpha+1}}, u_{+}\bigg), $

有以下关系成立

$ R(\rho_{-}, u_{-}): \left\{ \begin{array}{ll} \xi=u-\frac{(\alpha+1)\varepsilon}{\rho^{\alpha+1}}, \\[3mm] u-\frac{\varepsilon}{\rho^{\alpha+1}}=u_{-}-\frac{\varepsilon}{\rho^{\alpha+1}_{-}}, \\[2mm] u>u_{-}, \rho< \rho_{-}. \end{array} \right.\\ J:\xi=u=u_{+}. $ (4.6)

在式子(4.6)中, 令 $\varepsilon \to 0$的极限, 有1-稀疏波 $R$退化成以下1-接触间断

$ J_{1}:\xi=u=u_{-}. $

此外, 在中间的状态中的交通密度取极限 $\varepsilon \to 0$, 有

$ \lim\limits_{\varepsilon \to 0}\rho_{*}^{\varepsilon}=\lim\limits_{\varepsilon \to 0}\bigg(\frac{\varepsilon \rho_{-}^{\alpha+1}}{(u_{+}-u_{-})\rho_{-}^{\alpha+1}+\varepsilon}\bigg)^{\frac{1}{\alpha+1}}=0, $ (4.7)

这隐含着一个真空的状态出现, 尽管在方程组(1.2)和(1.5)黎曼解中没有真空.总之, 对于情形 $ u_{+}>u_{-}$, 可得极限

$ (\rho, u)(x, t)=\lim\limits_{\varepsilon \to 0}(\rho^{\varepsilon}, u^{\varepsilon})(x, t)= \left\{ \begin{array}{ll} \displaystyle (\rho_{-}, u_{-}), \, \, \, \, \, & -\infty<\frac{x}{t}<u_{-}, \\[3mm] \displaystyle (0, u_{+}), \, \, \, \, \, & u_{-}<\frac{x}{t}<u_{+}, \\[3mm] \displaystyle (\rho_{+}, u_{+}), \, \, \, & u_{+}<\frac{x}{t}<+\infty, \end{array} \right. $ (4.8)

这正是PGD系统(1.3)带相同的黎曼初值(1.6)的解.

定理4.3  对于情形 $ u_{+}=u_{-}$, 系统(1.2)和(1.5)的黎曼解为

$ (\rho, u)(x, t)= \left\{ \begin{array}{ll } \displaystyle (\rho_{-}, u_{-}), \, \, \, \, \, &\xi<u_{+}, \\ \displaystyle (\rho_{+}, u_{+}), \, \, \, \, \, &\xi>u_{+}, \end{array} \right. $ (4.9)

这是零压气体动力学模型(1.3)带相同的黎曼初值(1.6)的解.

注4.1  Shen和Sun[19]所示当压力消失时, 交通模型(1.2), (1.4)的黎曼解不收敛于零压气体动力学模型(1.3)带相同初值的黎曼解.然而, 我们证实当压力消失时, 广义Chaplygin气体的Aw-Rascle ( $AR$)交通模型(1.2)和(1.5)的黎曼解能收敛于零压气体动力学模型(1.3)带相同初值的黎曼解.

参考文献
[1] Aw A, Rascle M. Resurrection of "second order" models of traffic flow. SIAM J Appl Math, 2000, 60: 916–938. DOI:10.1137/S0036139997332099
[2] Berthelin F, Degond P, LeBlanc V, Moutarl S, Rascle M, Royer J. A traffic-flow model with constraints for the modeling of traffic jams. Math Models Methods Appl Sci, 2008, 18: 1269–1298. DOI:10.1142/S0218202508003030
[3] Berthelin F, Degond P, Delitata M, Rascle M. A model for the formation and evolution of traffic jams. Arch Ration Mech Anal, 2008, 187: 185–220. DOI:10.1007/s00205-007-0061-9
[4] Brenier Y, Grenier E. Sticky particles and scalar conservation laws. SIAM J Numer Anal, 1998, 35: 2317–2328. DOI:10.1137/S0036142997317353
[5] Bouchut F. On Zero Pressure Gas Dynamics//Advances in Kinetic Theory and Computing. Singapore:World Scientific, 1994
[6] Chaplygin S. On gas jets. Sci Mem Moscow Univ Math Phys, 1904, 21: 11–21.
[7] Cheng H J, Yang H C. Riemann problem for the relativistic Chaplygin Euler equations. J Math Anal Appl, 2011, 381: 17–26. DOI:10.1016/j.jmaa.2011.04.017
[8] Chang T, Hsiao L. The Riemann Problem and Interaction of Waves in Gas Dynamics. New York: Longman Scientific and Technica, 1989.
[9] Cruz N, Lepe S, Pena F. Dissipative generalized Chaplygin gas as phantom dark energy physics. Phys Lett B, 2007, 646: 177–182. DOI:10.1016/j.physletb.2006.12.070
[10] Daganzo C. Requiem for second order fluid approximations of traffic flow. Transportation Res Part B, 1995, 29: 277–286. DOI:10.1016/0191-2615(95)00007-Z
[11] Gorini V, Kamenshchik A, Moschella. The Chaplygin gas as an model for dark energy. 2003, DOI:10.1142/9789812704030-0050
[12] Huang M X, Shao Z Q. Riemann problem for the relativistic generalized Chaplygin Euler equations. Commun Pure Appl Anal, 2016, 15: 127–138.
[13] Karman T V. Compressibility effects in aerodynamics. J Aeron Sci, 1941, 8: 337–365. DOI:10.2514/8.10737
[14] Keyfitz B L, Kranzer H C. Spaces of weighted measures for conservation laws with singular shock solutions. J Differential Equations, 1995, 118: 420–451. DOI:10.1006/jdeq.1995.1080
[15] Nedeljkov M. Delta and singular delta locus for one dimensional systems of conservation laws. Math Methods Appl Sci, 2004, 27: 931–955. DOI:10.1002/(ISSN)1099-1476
[16] Pan L J, Han X L. The Aw-Rascle traffic model with Chaplygin pressure. J Math Anal Appl, 2013, 401: 379–387. DOI:10.1016/j.jmaa.2012.12.022
[17] Panov E Y, Shelkovich V M. Shock waves as a new type of solutions to system of conservation laws. J Differential Equations, 2006, 228: 49–86. DOI:10.1016/j.jde.2006.04.004
[18] Pang Y C, Yang H C. Two-dimensional Riemann problem involving three contact discontinuities for 2×2 hyperbolic conservation laws in anisotropic media. J Math Anal Appl, 2015, 428: 77–79. DOI:10.1016/j.jmaa.2015.02.042
[19] Shen C, Sun M. Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model. J Differential Equations, 2010, 249: 3024–3051. DOI:10.1016/j.jde.2010.09.004
[20] Shandarin S F, Zeldovich Y B. The large-scale structure of the universe:turbulence, intermittency, structures in a selfgravitating medium. Rev Mod Phys, 1989, 61: 185–220. DOI:10.1103/RevModPhys.61.185
[21] Sheng W C, Zhang T. The Riemann problem for the transportation equations in gas dynamics. Mem Amer Math Soc, 1999, 137: 654.
[22] Shelkovich V M. The Riemann problem admitting δ-, δ'-shocks and vacuum states (the vanishing viscosity approach). J Differential Equations, 2006, 231: 459–500. DOI:10.1016/j.jde.2006.08.003
[23] Setare M R. Interacting holographic generalized Chaplygin gas model. Phys Lett B, 2007, 654: 1–6. DOI:10.1016/j.physletb.2007.08.038
[24] Tsien H S. Two dimensional subsonic flow of compressible fluids. J Aeron Sci, 1939, 6: 399–407. DOI:10.2514/8.916
[25] Wang G D. The Riemann problem for one dimensional generalized Chaplygin gas dynamics. J Math Anal Appl, 2013, 403: 434–450. DOI:10.1016/j.jmaa.2013.02.026
[26] Yang H. Riemann problems for a class of coupled hyperbolic systems of conservation laws. J Differential Equations, 1999, 159: 447–484. DOI:10.1006/jdeq.1999.3629
[27] Zhang H M. A non-equilibrium traffic model devoid of gas-like behavior. Transportation Res Part B, 2002, 36: 275–290. DOI:10.1016/S0191-2615(00)00050-3