近年来, 自治或非自治种群生态系统的动力学行为得到了广泛的研究.目前许多重要的结果包括系统的平衡点, 全局渐近或指数稳定, 持久性或绝灭性, 存在周期或概周期解的全局吸引等, 在文献[1-16]中都有分析研究.例如, 在文献[17]中, Tan等考虑了如下带有脉冲扰动的竞争系统
其中$x_1(t)$和$x_2(t)$分别表示两个竞争物种关于时间$t$的种群密度, $a_1(t)$和$a_2(t)$分别表示两个物种的内禀增长率, $b_1(t),d_1(t),b_2(t)$和$d_2(t)$分别表示种群内部特定竞争影响系数, $c_1(t)$与$c_2(t)$是种群间活动影响强度, $\gamma_{1k}>-1$和$\gamma_{2k}>-1$且都是常数, $0<\tau_1<\tau_2<\cdots<\tau_k<\tau_{k+1}<\cdots$和$\lim\limits_{k\rightarrow+\infty}\tau_k=+\infty$.作者通过分析得到了系统$(1.1)$存在唯一渐近稳定概周期解的充分条件.
当种群间没有代级重叠时, 离散时间系统的差分方程比连续方程更适合研究种群动力系统, 因为离散时间系统的差分方程可以提供有效的数值模拟, 因此研究离散时间系统的差分方程是有意义的.近来, 有许多学者对带有反馈控制的连续或离散系统概周期解的存在性问题做了许多研究工作, 更多研究结果可以参看文献[18-24]和其中的参考文献.除此之外, 为了将差分方程与微分方程统一起来研究, Hilger于1988年在他的博士论文[25]中提出了时间尺度理论.时间尺度${\mathbb T}$就是实数集${\mathbb R}$的一个非空闭子集, 其上拓扑是由实数集${\mathbb R}$的标准拓扑诱导的拓扑.时间尺度理论的建立, 统一了同一问题要分别对其离散系统和连续系统进行研究的情形.随着人们对时间尺度理论的进一步研究, 发现时间尺度上的微分方程不仅可以统一差分方程和微分方程, 还可以用来更精确地描述一些系统, 比如一种季节性世代不重叠的种群繁殖模型.由于环境等因素的改变, 此类模型不能单一的用连续系统或离散系统完全准确地来描述, 若将这个模型利用时间尺度来讨论, 当取到合适的时间尺度时, 就可以将种群模型精确地建立起来.因此, 时间尺度理论的提出, 丰富和完善了动力系统的研究内容, 尤其是种群动力学模型的研究.它不仅为我们研究更多种群动力学模型提供了新的理论依据, 也使我们可以更深刻的理解离散系统和连续系统的关系. 2001年, Bohner M和Peterson A出版了时标上的动力系统专著[26], 且在2年之后, 他们又共同完成了专著[27], 为进一步的研究时标理论打下了坚实的理论基础.近年来, 越来越多的研究者对时标上动力系统进行了研究, 研究结果也越来越丰富.时标上动力系统的研究己成为非常活跃的研究领域, 研究内容覆盖越来越广泛, 尤其是关于它们的周期性.而时标上的概周期动力方程目前已经被许多数学家所认可[28-30].特别地, 时标上的概周期函数, 是本文讨论的核心问题, 最早在文献[28]中由Li和Wang提出, 这是一种更一般的概周期.有关时标概周期动力系统的一些结果, 我们可参看文献[31-33]和它们的参考文献.尽管许多学者研究了带有反馈控制的竞争系统, 大多都是讨论带有反馈控制的连续或离散系统.据我们所知, 还没有工作讨论时标上带有反馈控制的两种群竞争系统概周期解的存在性问题.
受以上文献的启发和提示, 本文我们将研究时标${\mathbb T}$上带有反馈控制的竞争系统
其中$u_{i}(t)$是关于种群$x_i(t)$的控制变量, $a_{i}(t)$, $b_i(t),c_i(t),d_i(t),e_i(t),h_i(t),f_i(t)$和$g_i(t)$都是非负概周期函数, 且$g_{i}(\cdot):{\mathbb T}\rightarrow(0,1)(i=1,2)$.
本文的主要目的是讨论系统$(1.2)$的持久性, 依据持久性结果, 使用微分比较原理和构造适合的Lyapunov函数, 得到存在唯一渐近正概周期解存在的充分条件.
为方便行文, 我们引入以下记号:
其中$f(t)$是非负有界函数.
在整篇文章中, 假设如下条件成立:
$(H_1)$ $a_{i}(t),b_{i}(t),c_{i}(t),d_{i}(t),e_{i}(t),h_{i}(t),f_{i}(t)$和$g_{i}(t)(i=1,2)$都是时标${\mathbb T}$上的概周期函数并且使得
其中${\cal R}^+$是集合${\mathbb T}$到${\mathbb R}$的正回归函数;
$(H_2)$ $a_{i}^M>b_{i}^l (i=1,2)$;
$(H_3)$ $\frac{a_{1}^l-c_{1}^M\exp\{x_{2}^*\}-e_{1}^Mu_{1}^*}{b_{1}^M+d_{1}^Mx_{1}^*}>1$;
$(H_4)$ $\frac{a_{2}^l-c_{2}^M\exp\{x_{1}^*\}-e_{2}^Mu_{2}^*}{b_{2}^M+d_{2}^Mx_{2}^*}>1$.
因为考虑到系统的生物意义, 系统(1.2) 的初始条件定义为
注1.1 令$y_{i}(t)=\exp\{x_{i}(t)\}\ (i=1,2)$, 若${\mathbb T}={\mathbb R}$, 可得到系统$(1.2)$的连续模型如下
若${\mathbb T}={\mathbb Z}$, 系统$(1.2)$可化简为如下带有反馈控制的非自治离散竞争系统
其中$\Delta v_i(n)=v_{i}(n+1)-v_{i}(n)\ (i=1,2)$是一阶前差微分算子.借助微分比较原理和构造合适的Lyapunov泛函, 许多学者给出了离散种群系统存在正概周期解的充分条件[22-23, 25].系统$(1.5)$正概周期解的存在性问题与文献[22-23, 25]的研究方法非常类似.显然, 系统$(1.4)$和$(1.5)$是系统$(1.2)$的特殊情况.因此由系统$(1.2)$的持久性和概周期解的存在性与一致渐近稳定性, 进而可以得到系统$(1.4)$以及系统$(1.5)$的持久性和正概周期解的存在性和一致渐近稳定性, 这样就将连续与离散统一了起来.
本文的主要结构如下:第2部分, 我们先为得到本文的一些主要结果做准备工作; 第3部分, 在持久性的基础上, 应用微分比较原理和构造合适的Lyapunov泛函, 我们得到系统(1.2) 存在正概周期解的充分条件; 一个数值算例在第4部分中给出.
现在我们给出主要结果中需要的一些定义和有用的引理.
定义2.1 [26] 令${\mathbb T}$为实数集${\mathbb R}$的一个非空闭子集(时标).前跃和后跃算子$\sigma,\rho:{\mathbb T}\rightarrow{\mathbb T}$以及graininess算子$\mu:{\mathbb T}\rightarrow{\mathbb R}_+$分别定义如下
$t\in{\mathbb T}$称作是左稠密的, 如果$t>\inf{\mathbb T}$且$\rho(t)=t$; 称作是左离散的, 如果$\rho(t)<t$; 称作是右稠密的, 如果$t<\sup{\mathbb T}$且$\sigma(t)=t$; 称作是右离散的, 如果$\sigma(t)>t$.如果${\mathbb T}$有一个左离散的最小值$m$, 那么${\mathbb T}^k={\mathbb T}-{m}$; 否则${\mathbb T}^k={\mathbb T}.$如果${\mathbb T}$有一个右离散的最小值$m$, 那么${\mathbb T}_k={\mathbb T}-{m}$; 否则${\mathbb T}_k={\mathbb T}.$
一个函数$f:{\mathbb T}\rightarrow{\mathbb R}$称作是右稠密连续的, 如果它在${\mathbb T}$中的右稠密点是连续的, 且在${\mathbb T}$中的左稠密点的左极限是存在的.如果$f$在每一个右稠密点处处连续, 则称$f$是在${\mathbb T}$上的连续函数.我们定义$C[J, {\Bbb R}]=\{u(t):u(t)$在$J$上连续$\}$, 以及$C^1[J, {\Bbb R}]=\{u(t):u^{\Delta}(t)$在$J$上连续$\}$.
设函数$y:{\mathbb T}\rightarrow{\mathbb R}$且$t\in{\mathbb T}^k$, 我们称$y^{\Delta}(t)$为$y$在$t$处的delta导数, 且具有如下性质
如果$y$是右稠密连续的, 令$Y^{\Delta}(t)=y(t)$, 则我们定义delta积分如下
一个函数$p:{\mathbb T}\rightarrow{\mathbb R}$称作是回归的, 如果
均成立.
所有回归右连续函数的集合$p:{\mathbb T}\rightarrow{\mathbb R}$记作${\cal R}={\cal R}({\mathbb T},{\mathbb R})$.如果
那么$p:{\mathbb T}\rightarrow{\mathbb R}$是正回归函数.定义集合
如果$r$是一个回归函数, 那么广义指数函数$e_r$定义如下
其柱变换如下
定义2.2 [26] 设$p,q:{\mathbb T}\rightarrow{\mathbb R}$是两个回归函数, 定义
引理2.1 [26] 假设$p,q:{\mathbb T}\rightarrow{\mathbb R}$是两个回归函数, 那么
(1) $e_0(t,s)\equiv1$且$e_{p}(t,t)\equiv1$;
(2) $e_p(\sigma(t),s)=(1+\mu(t))p(t)e_{p}(t,t)$;
(3) $e_p(t,s)=\frac{1}{e_p(s,t)}=e_{\ominus p}(s,t)$;
(4) $e_p(t,s)e_{p}(s,r)=e_p(t,r)$;
(5) $e_p(t,s)e_{p}(s,r)=e_{p}(t,r)$;
(6) 如果$a,b,c\in{\mathbb T}$, 那么$\int_{a}^be_p(c,\sigma(t))\Delta t =e_{p}(c,a)-e_p(c,b)$.
引理2.2 [26] 以下结论成立:
(1) $(\nu_1f+\nu_2g)^\Delta=\nu_1f^\Delta+\nu_2g^\Delta$, 对任意常数$\nu_1$和$\nu_2$;
(2) $(fg)^\Delta(t)=f^\Delta(t)g(t)+f(\sigma(t))g^\Delta(t)=f(t)g^\Delta(t)+f^\Delta(t)g(\sigma(t))$;
(3) 如果$f^\Delta\geq0$, 那么$f$是增函数.
定义2.3 [26] 一个函数是$f:{\mathbb T}\rightarrow{\mathbb R}$正回归的, 如果$1+\mu(t)f(t)>0,\forall t\in {\mathbb T}$.
记${\cal R}^+$是集合${\mathbb T}$到${\mathbb R}$的正回归函数.
引理2.3 [26] 假设$p\in{\cal R}^+$, 那么
(1) $e_{p}(t,s)>0,$ $\forall s,t\in{\mathbb T}$;
(2) 如果$p(t)\leq q(t)$, $\forall t\geq s,t,s\in{\mathbb T}$, 那么$e_{p}(t,s)\leq e_{q}(t,s)$, $\forall t\geq s$.
定义2.4 [28] ${\mathbb T}$称作是概周期时标, 函数$f:{\mathbb T}\rightarrow{\mathbb R}^n$称为概周期函数, 如果$\forall\epsilon>0$, 集合$ E(\epsilon,f)=\{\tau\in\Pi:|f(t+\tau)-f(t)|<\epsilon,\forall t\in{\mathbb T}\}\neq\{0\} $在${\mathbb T}$中相对紧, 也就是说, 对$\forall\epsilon>0$, 存在实数$l(\epsilon)>0$使得每一个长度为$l(\epsilon)$的区间至少包含一个$\tau\in E(\epsilon,f)$, 有$|f(t+\tau)-f(t)|<\epsilon,\forall t\in{\mathbb T}.$则集合$E(\epsilon,f)$称作$f(t)$的$\epsilon$ -不变集, $l(\epsilon)$称作$f(t)$的$\epsilon$ -不变数.
引理2.4 [28] 如果$f\in C({\mathbb T},{\mathbb R})$是一个概周期函数, 那么函数$f$在${\mathbb T}$上是有界的.
引理2.5 [28] 如果$f,g\in C({\mathbb T},{\mathbb R})$是概周期函数, 那么$f+g,fg$也是概周期的.
定义2.5 称系统$(1.2)$是持久的, 如果对于系统$(1.2)$的每一个解$(x_1(t),x_2(t),u_1(t),$ $u_2(t))^T$, 存在正常数$m_i,q_i,M_i$和$Q_i(i=1,2)$使得
引理2.6 [30] 令$-a\in {\cal R}^+.$
(1) 如果$x^\Delta(t)\leq b-ax^{\alpha}(t)$, 那么
特别地, 如果$a>0,b>0$, 则对$t>t_0$有$\limsup\limits_{t\rightarrow+\infty}x(t)\leq(\frac{b}{a})^\alpha,$其中$\alpha$是正常数.
(2) 如果$x^\Delta(t)\geq b-ax^{\alpha}(t)$, 那么
特别地, 如果$a>0,b>0$, 则对$t>t_0$有$\liminf\limits_{t\rightarrow+\infty}x(t)\geq(\frac{b}{a})^\alpha$, 其中$\alpha$是正常数.
这一部分, 我们将给出系统(1.2) 持久性的充分条件.
命题 3.1 假设$(H_1)-(H_3)$成立.则系统$(1.2)$的每个解$(x_1(t),x_2(t),u_1(t),u_2(t))^T$都满足
其中
证 若$(x_1(t),x_2(t),u_1(t),u_2(t))^T$是系统$(1.2)$的任一个解, 由系统$(1.2)$的第一和第二个方程, 当$x\in {\mathbb R}$时, 应用Bernoulli不等式$\exp\{x\}\geq1+x$, 可得
由引理$2.5$可得
$\forall\epsilon>0$, 存在一个$t_0\in{\mathbb T}$, 使得$x_{i}(t)\leq x_{i}^*+\epsilon,\forall t\geq t_0$.
类似地, 由系统$(1.2)$的第三和第四个方程, 可得
令$\epsilon\rightarrow0$, 由引理$2.5$可得
也即
证毕.
命题 3.2 假设$(H_1),(H_3)$和$(H_4)$成立.则系统$(1.2)$的每一个解$(x_1(t),x_2(t),u_1(t),u_2(t))^T$都满足
其中$x_{1*}=\frac{a_{1}^l-c_{1}^M\exp\{x_{2}^*\}-e_{1}^Mu_{1}^*}{b_{1}^M+d_{1}^Mx_{1}^*},x_{2*}=\frac{a_{2}^l-c_{2}^M\exp\{x_{1}^* \}-e_{2}^Mu_{2}^*}{b_{2}^M+d_{2}^Mx_{2}^*},u_{i*}=\frac{h_{i}^{l}+g_{i}^l\exp\{x_{i*}\}}{f_{i}^{M}}.$
证 根据命题$3.1$, 存在一个$t_1\in{\mathbb T}$使得$x_{i}(t)\leq x_{i}^*+\epsilon,u_{i}(t)\leq u_{i}^*+\epsilon,\forall t>t_1,i=1,2$.则当$t>t_1$时, 由系统$(1.2)$的第一个方程, 可得
假设$t>t_1$, 有
另一方面, 假设存在$\tilde{t}\geq t_1$使得
$\forall t\in[t_1,\tilde{t})_{{\mathbb T}}$, 有
因此, 有
同理, $\forall t\in[t_1,\tilde{t})_{\mathbb T}$, 有
可推出$x_{1}^\Delta(\tilde{t})<0$.这是矛盾的.因此, 当$t\geq t_1$时, 系统$(1.2)$成立, 即
令$\epsilon\rightarrow0$, 则
$\forall\epsilon>0$, 可得$\liminf\limits_{t\rightarrow+\infty} x_{1}(t)\geq \ln (x_{1*}-\epsilon)$.即$\forall\epsilon_1>0$, 存在$t_1\in{\mathbb T}$, 使得$x_{1}(t)\geq\ln( x_{1*}-\epsilon_1)$对$\forall t\geq t_1$都成立.
类似地, 由系统$(1.2)$的第二个方程, 可得
则当$t>t_2$时, 下式成立
否则, 假设存在$\tilde{t}\geq t_2$, 使得
可得
因此
因此, $\forall t\in[t_2,\tilde{t})_{\mathbb T}$, 有
故有$x_{2}^\Delta(\tilde{t})<0$, 这与假设是矛盾的.因此, 当$t\geq t_2$时, 系统$(1.2)$成立, 故有下列不等式成立
$\forall\epsilon>0$, 可得$\liminf\limits_{t\rightarrow+\infty}x_{2}(t)\geq\ln (x_{2*}-\epsilon)$.因此, $\forall\epsilon_2>0$, 存在一个$t_3\in{\mathbb T}$使得$x_{2}(t)\geq\ln( x_{2*}-\epsilon_2),\forall t\geq t_3$.
由系统$(1.2)$的第三和第四个方程可得
令$\epsilon_i\rightarrow0(i=1,2)$, 则有
由命题3.1和3.2, 下面给出这一部分的主要结果:
定理 3.1 假设$(H_1)-(H_4)$成立.则系统$(1.2)$是持久的.
考虑时标上非线性概周期微分系统
其中$f:{\mathbb T}\times{\mathbb S}_B\rightarrow{\mathbb R},{\mathbb S}_B=\{x\in{\mathbb R}:\|x\|_0<B\},\|x\|_0=\sup_{t\rightarrow{\mathbb T}}|x(t)|,$当$x\in{\mathbb S}_B$时, 函数$f(t,x)$在$t$上一致收敛且是连续概周期的.为了寻找系统$(1.2)$的解, 考虑系统$(1.2)$的乘积系统
引理 4.1 假设对于给定的函数$f(t,x)$, 定义在${\mathbb T}^+\times {\mathbb S}_B\times{\mathbb S}_B$上的Lyapunov函数$V(t,x,y)$满足:
(ⅰ) $a(\|x-y\|_0)\leq V(t,x,y)\leq b(\|x-y\|_0)$, 其中$a,b\in \kappa,\kappa=\{a\in C({\mathbb R}^+,{\mathbb R}^+):a(0)=0,\;\;\mbox{且}\; a\;\mbox{是增函数}\}$.
(ⅱ) $|V(t,x,y)-V(t,x_1,y_1)|\leq L(\|x-x_1\|_0+\|y-y_0\|_0)$, 其中$L>0.$
(ⅲ) $D^+V^{\Delta}_{(4.1)}(t,x,y)\leq -cV(t,x,y)$, 其中$c>0$, $-c\in {\cal R}^+$.
进一步, 当$t\in {\mathbb T}^+$时, 如果存在系统$(4.1)$的一个解$x(t)\in{\mathbb S}$, 其中${\mathbb S}\subset{\mathbb S}_B$是一个紧集, 则$f(t,x)$存在唯一的一致渐近稳定概周期解$p(t)\in{\mathbb S}$.当$x\in{\mathbb S}_B$时, $f(t,x)$收敛于$x$, 那么$p(t)$也是周期的.
命题 4.1 若$(H_1)-(H_4)$成立, 则$\Omega\neq\emptyset$.
证 由于$a_i(t),b_i(t),c_i(t),d_i(t),e_i(t),f_i(t),g_i(t)$和$h_i(t),i=1,2$都是概周期函数, 则存在一个序列$\tau=\{\tau_p\}\subseteq{\mathbb T}$当$p\rightarrow+\infty$有$\tau_p\rightarrow+\infty$, 使得
当$p\rightarrow+\infty$, $\forall\epsilon>0$.由命题3.1和命题3.2可得, 存在$t_0\in{\mathbb T}$使得
当$t\geq t_0-\tau_p,p=1,2,\cdots$时, 记$x_{ip}(t)=x_{i}(t+\tau_p))$和$u_{ip}(t)=u_{i}(t+\tau_p)$.对任意的正整数$q$, 容易验证存在一个序列$\{x_{ip}(t):p\geq q \}$和$\{u_{ip}(t):p\geq q\}$使得序列$\{x_{ip}(t)\}$和$\{u_{ip}(t)\}$有子序列, 再次记作$\{x_{ip}(t)\}$和$\{u_{ip}(t)\}$, 当$p\rightarrow+\infty$时, 在${\mathbb T}$的任意区间分别都收敛.因此, 有序列$\{y_{i}(t)\}$和$\{v_{i}(t)\}$使得
联立方程组
容易看出$(Y(t),V(t))$是系统(1.2) 的一个解, $\forall \epsilon>0$时, 当$t\in{\mathbb T},i=1,2$时有$x_{i*}-\epsilon\leq y_{i}(t)\leq x_{i}^*+\epsilon,u_{i*}-\epsilon\leq v_{i}(t)\leq u_{i}^*+\epsilon,$ $x_{i*}\leq y_{i}(t)\leq x_{i}^*,u_{i*}\leq v_{i}(t)\leq u_{i}^*$.
定理 4.1 假设$(H_1)-(H_4)$成立.则系统$(1.2)$至少存在一个唯一渐近稳定概周期解$X(t)=(x_1(t),x_2(t),u_1(t),u_2(t))^T\in\Omega$.
证 由命题$4.1$, 存在$X(t)$使得$x_{i*}\leq x_{i}(t)\leq x_{i}^*,u_{i*}\leq u_{i}(t)\leq u_{i}^*,i=1,2,\forall t\in {\mathbb T}.$因此, $|x_{i}(t)|<A_i,|u_i(t)|<B_i$, 其中$A_i=\max\{|x_{i*}|,|x_{i}^*|\},B_i=\max\{|u_{i*}|,|u_{i}^*|\},i=1,2.$定义$\|X\|=\sup\limits_{t\in{\mathbb T}}\sum\limits \limits_{i=1}^2|x_{i}(t)|+\sup\limits_{t\in{\mathbb T}} \sum\limits_{i=1}^2|u_{i}(t)|,(u,v)\in {\mathbb R}^{2\times2}$.假若$X_1=(x(t),u(t)),X_2=(y(t),v(t))$是系统$(1.2)$任意两个解, 则可得
考虑在${\mathbb T}^+\times\Omega\times\Omega$上的Lyapunov函数$V(t,X_1,X_2)$定义为
容易知道范数$\|X_1-X_2\|=\sup\limits_{t\in{\mathbb T}}\sum\limits_{i=1}^2|x_i(t)-y_i(t)|+\sup\limits_{t\in{\mathbb T}}\sum\limits_{i=1}^2|u_i(t)-v_i(t)|$和范数$\|X_1-X_2\|_*=\sup\limits_{t\in{\mathbb T}}\sqrt{\sum\limits_{i=1}^2(x_i(t)-y_i(t))^2+(u_i(t)-v_i(t))^2}$是等价的, 也即, 存在两个常数$C_1>0,C_2>0$使得$C_1\|X_1-X_2\|\leq\|X_1-X_2\|_*\leq C_2\|X_1-X_2\|$.因此, $(C_1\|X_1-X_2\|)^2\leq V(t,X_1,X_2)\leq(C_2\|X_1-X_2\|)^2$.若$a,b\in C({\mathbb R}^+,{\mathbb R}^+),a(x)=C_{1}^2x^2, b(x)=C_{2}^2x^2$, 因此, 引理$4.1$中的条件(ⅰ)是满足的.除此之外, 有
其中$(X_{1}^*,X_{2}^*)=(x_{1}^*,x_{2}^*,u_{1}^*,u_{2}^*),L=4\max\{A_i,B_i:i=1,2\}.$故引理$4.1$的条件(ⅱ)满足.计算$V(t,X_1,X_2)$沿系统$(4.6)$的右上导数$D^+V^{\Delta}:$
考虑系统$(4.4)$, 当$i=1,2$时有
应用微分中值定理可得$\exp\{x_i(t)\}-\exp\{y_i(t)\}=\xi_i(t)(x_i(t)-y_i(t)),$ $\exp\{2x_i(t)\}-\exp\{2y_i(t)\}$ $=2\eta_i(t)(x_i(t)-y_i(t)),$其中$\xi_i$和$\eta_i$分别介于$x_i(t)$和$y_i(t)$, $2x_i(t)$和$2y_i(t)$之间, 且$\xi_i=\exp\{\xi_i(t)\},\eta_i=\exp\{2\eta_i(t)\}$, $i=1,2$.若$\bar{x}_{i}^{\Delta}(t)=(x_{i}(t)-y_i(t))^{\Delta},\bar{u}_{i}^{\Delta}(t)=(u_{i}(t)-v_i(t))^{\Delta}$ $(i=1,2),$则系统$(4.5)$化简为
本部分, 我们给出一个例子证明主要结果的有效性.
例 考虑时标上带有反馈控制两种群竞争系统
令${\mathbb T}=\bigcup\limits_{k=0}^\infty[k,k+0.85].$则系统$(5.1)$是持久的并且存在唯一渐近稳定概周期解.
证 根据已知条件验证假设, 利用数学软件计算可得
则, $0<\Theta<1$.因此, 定理3.1和定理4.1的所有的条件都满足.故系统$(5.1)$是持久并且存在唯一渐近稳定概周期解.事实上, 利用Matlab软件作数值模拟, 当${\mathbb T}={\mathbb Z}$和${\mathbb T}={\mathbb R}$时, 系统$(5.1)$的数值模拟结果分别见图 1-8.由图 1-8, 我们能看出$(x_1(t),x_2(t),u_1(t),u_2(t))^T$是全局渐近稳定的.
众所周知, 连续和离散在实际应用中是非常重要, 而时标统一了连续与离散分析, 越来越多的学者开始关注并开始研究时标动力系统, 结果也会越来越丰富, 因此, 本文讨论带有反馈控制的非自治竞争种群模型的时标动力系统是有研究意义的, 而且我们得到了系统存在持久性和概周期解的一致渐近稳定性的充分条件并用Matlab做数值模拟验证了结果的有效性.