数学物理学报  2017, Vol. 37 Issue (4): 637-646   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
夏红川
刘浩
钟春平
复Hilbert空间单位球上一类新的Roper-Suffridge算子
夏红川1, 刘浩2, 钟春平3     
1. 信阳师范学院数学与统计学院 河南信阳 464000;
2. 河南大学数学与统计学院 河南开封 475001;
3. 厦门大学数学科学学院 福建厦门 361005
摘要:构造了复Hilbert空间 $X$ 的单位球 $B$ 上一类新的Roper-Suffridge算子 $ \begin{eqnarray*} &&\Phi_{\beta _1,\cdots,\beta_{n+1}} (f) (z) = F(z) \\ & =&\sum\limits_{k=1}^{n}\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta _k} \langle z, e_k\rangle e_k +\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta_{n+1}} \Big (z-\sum\limits_{k=1}^{n}\langle z, e_k\rangle e_k\Big), \end{eqnarray*} $ 其中 $\dim X\geq n$ , $f$ 是单位圆盘 $D$ 上一个正规化局部双全纯函数, $\{e_j \in X, j=1, 2,\cdots,n\}$ $X$ 中一组单位正交向量.证明当参数 $\beta_j$ 满足一些特定条件时, 该算子在单位球 $B$ 上分别保持 $\beta$ 型螺形性、 $\alpha$ 次殆星形性和 $\alpha$ 次星形性.
关键词Roper-Suffridge算子    双全纯映照    Hilbert空间    
A New Roper-Suffridge Extension Operator on the Unit Ball in Hilbert Spaces
Xia Hongchuan1, Liu Hao2, Zhong Chunping3     
1. College of Mathematics and Statistics, Xinyang Normal University, Henan Xinyang 464000;
2. College of Mathematics and Statistics, Henan University, Henan Kaifeng 475001;
3. School of Mathematical Sciences, Xiamen University, Fujian Xiamen 361005
Abstract: In this paper, we construct a new Roper-Suffridge extension operator $ \Phi_{\beta _1,\cdots,\beta_{n+1}} (f) (z) = F(z) =\sum\limits_{k=1}^{n}\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta _k} \langle z, e_k\rangle e_k +\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta_{n+1}} \Big (z-\sum\limits_{k=1}^{n}\langle z, e_k\rangle e_k\Big) $ on the unit ball $B$ in complex Hilbert space $X$ , where $\dim X\geq n$ , $f$ is a normalized locally biholomorphic function on the unit disc $D$ , $\{e_j \in X,\; j=1, 2, \cdots, n\}$ is a series of orthogonal unit vectors in $X$ . Under some special conditions of $\beta_j$ , we prove the operator can preserve the property of spirallikeness of type $\beta$ , almost starlikeness of order $\alpha$ and starlikeness of order $\alpha$ on the unit ball $B$ , respectively.
Key words: Roper-Suffridge operator     Biholomorphic mappings     Hilbert spaces    
1 引言

众所周知, 通过单复变数的单叶函数构造多复变数的双全纯映照, Roper-Suffridge算子是一种有效的方法, 并且该算子能保持一些特殊的几何性质.

1995年, Roper和Suffridge[1]首先在 ${\Bbb C}^n$空间的单位球 $B^n$上引入了Roper-Suffridge算子, 以下简记为R-S算子, 并证明了该算子保持凸性. 2000年, Graham和Kohr[2]证明了该算子保持Bloch性质和星形性.同时, Roper和Suffridge [1]也在复Hilbert空间 $X$的单位球 $B$上引入了如下形式的R-S算子

$ \begin{equation} \Phi(f)(z)=F(z)=f(\langle z, e\rangle)e + \sqrt{f'(\langle z, e\rangle)} (z-\langle z, e\rangle e), \quad z\in B, \label{1.1} \end{equation} $ (1.1)

其中 $f$是复平面 ${\Bbb C}$中单位圆盘 $D$上的一个正规化局部双全纯函数, $e \in \partial B$, 平方根取分支使得 $\sqrt{f'(0)}=1$, 同时证明了R-S算子(1.1) 保持凸性和星形性.通过R-S算子可以构造大量具体的定义在单位球 $B$上的具有特殊几何性质的映照, 这正是大批学者研究这一算子的一个原因.

2004年, 冯淑霞[3]将算子(1.1) 推广为

$ \begin{equation} \Phi_{\beta, \gamma}(f)(z)= f(\langle z, e\rangle)e + \Big(\frac{f(\langle z, e\rangle)}{\langle z, e\rangle}\Big)^{\beta} f'(\langle z, e\rangle)^{\gamma}(z-\langle z, e\rangle e), \quad z \in B, \label{1.2} \end{equation} $ (1.2)

其中 $\beta\in[0,1]$, $\gamma\in[0, \frac{1}{2}]$, $\beta+\gamma\leq 1$, $e \in X $ $\|e\|=1$, 幂函数取分支使得 $\Big(\frac{f(\langle z, e\rangle)}{\langle z, e\rangle}\Big)^{\beta}\Big|_{\langle z, e\rangle=0}$ $=1$, $(f'(0))^{\gamma}=1$, 同时证明了 $\Phi_{\beta, \gamma}$在复Hilbert空间的单位球 $B$上保持 $\alpha$次星形性.

同年, 刘小松[4]将算子(1.2) 推广为

$ \begin{eqnarray} \Phi(f)(z)&=&\Phi_{\beta_2, \gamma_2, \cdots, \beta_n, \gamma_n}\nonumber\\ &=&\sum\limits_{k=1}^{n-1}\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta _k} f'(\langle z, e\rangle)^{\gamma_k}\langle z, e_k\rangle e_k \nonumber\\ & &+\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta_{n}} f'(\langle z, e\rangle)^{\gamma_n} \Big(z-\sum\limits_{k=1}^{n-1}\langle z, e_k\rangle e_k\Big), \quad z\in B, \label{a} \end{eqnarray} $ (1.3)

其中 $\beta_1=1$, $\gamma_1 =0$, $\beta_k \in [0,1]$, $\gamma_k \in [0, \frac{1}{2}]$ $\beta_k+ \gamma_k \leq 1$, $k =2, 3, \cdots, n$, $\{e_k\}$ $X$中一组单位正交向量, 即 $e_k \in X$ $(k= 1, 2, \cdots, n)$, $\|e_k\|=1$ $\langle e_j, e_k\rangle = 0$ $(j \neq k)$, 幂函数取分支使得 $\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta_k}\Big|_{\langle z, e_1\rangle=0}=1$, $(f'(0))^{\gamma_k}=1$, $k=2, 3, \cdots, n$, 同时证明了算子(1.3) 在单位球 $B$上保持 $\beta$型螺形性和 $\alpha$ $\beta$型螺形性.

2014年, 我们在有界完全Reinhardt域 $\Omega\subset{\Bbb C}^n$上构造了一类新的R-S算子[5]

$ \begin{equation} \Phi^{r}_{n, \beta _1, \cdots, \beta_n} (f) (z) =\Big(\big(\frac{rf(\frac{z_1}{r})}{z_1}\big)^{\beta _1}z_1, \big(\frac{rf(\frac{z_1}{r})}{z_1}\big)^{\beta_2}z_2, \cdots, \big(\frac{rf(\frac{z_1}{r})}{z_1}\big)^{\beta _n}z_n\Big)', \label{1.3} \end{equation} $ (1.4)

其中 $r=\sup\{|z_1|:z=(z_1, \cdots, z_n)\in\Omega\}$, $\beta_j \in [0,1]$, $j=1, 2, \cdots, n$ $\beta_k\leq \beta_1$, $k=2, 3, \cdots, n$, 同时证明了R-S算子(1.4) 分别在 $\Omega$上保持 $\beta$型螺形性, $\alpha$次殆星形性和 $\alpha$次星形性.

更多有关R-S算子的结果, 参阅文献[6-18].

本文, 我们将算子(1.4) 推广到复Hilbert空间 $X$的单位球 $B$上, 考虑如下形式的R-S算子

$ \begin{equation} \Phi_{\beta _1, \cdots, \beta_{n+1}} (f) (z) =\sum\limits_{k=1}^{n}\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta _k} \langle z, e_k\rangle e_k +\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta_{n+1}} \Big (z-\sum\limits_{k=1}^{n}\langle z, e_k\rangle e_k\Big), \label{1.4} \end{equation} $ (1.5)

其中 $n\leq\dim X\leq \infty$, $f$是单位圆盘 $D$上的正规化局部双全纯函数, $\{e_k, k=1, 2, \cdots, n\}$ $X$中一组单位正交向量, 幂函数的分支取值同上, 我们将证明当参数 $\beta_k$满足一些特定条件时, 算子(1.5) 与算子(1.4) 保持同样的几何性质.

2 预备知识

${\Bbb C}$是复平面, $D$ ${\Bbb C}$中的单位圆盘, $X$是一复Hilbert空间, $\langle\cdot, \cdot\rangle$ $X$上的内积, $\|\cdot\|$是由 $\langle\cdot, \cdot\rangle$诱导的范数, 即对任意的 $z \in X$, $\|z\| =\sqrt{\langle z, z \rangle}$.记 $B =\{z \in X : \|z\| <1 \}$ $X$中的单位球, $\partial B =\{z \in X : \|z\| =1 \}$ $B$的边界.设 $f : B \rightarrow X$是全纯映照, 用 $D f(z)$表示 $f$ $z$点的一阶Fréchet导数, 其中 $D f(z): X \rightarrow X$是一有界线性算子且满足如下条件

$ \lim\limits_{h\rightarrow 0}\frac{\|f(z + h )-f (z) -D f(z)h\|}{\|h\|}=0. $

假定 $\Omega$ $X$中的开集, 记 $H(\Omega)$ $\Omega$ $X$的全纯映照的全体.映照 $f\in H(\Omega)$被称为是双全纯的, 如果 $f$的逆映照 $f^{-1}$存在且全纯; 映照 $f$被称为是正规化的, 如果 $f$满足 $f(0)=0$ $D f(0)=I$, 其中 $I$表示 $X$上的恒等映照.

定义2.1[13]  设 $f: B \rightarrow X$ $B$上的正规化局部双全纯映照, $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$.如果

$ \begin{equation} {\rm Re}\, \langle {\rm e}^{-{\rm i}\beta}(D f(z))^{-1}f(z), z \rangle \geq 0, \quad z\in B, \end{equation} $ (2.1)

则称 $f$为单位球 $B$上的 $\beta$型螺形映照.

$X = {\Bbb C}$ $B =D$时, 上面的不等式变为

$ \begin{equation} {\rm Re}\, \Big\{{\rm e}^{-{\rm i}\beta}\frac{f(z)}{zf'(z)}\Big \}\geq 0, \quad\label{b} z\in D, \end{equation} $ (2.2)

(2.2) 式即为单位圆盘 $D$ $\beta$型螺形函数的解析定义.

定义2.2[3]  设 $f: B \rightarrow X$ $B$上的正规化局部双全纯映照, $\alpha \in [0, 1)$.如果

$ \begin{equation} {\rm Re}\, \langle (D f(z))^{-1}f(z)-\alpha z, z \rangle \geq 0, \quad z\in B, \label{4} \end{equation} $ (2.3)

则称 $f$为单位球 $B$上的 $\alpha$次殆星形映照.

$X = {\Bbb C}$ $B =D$时, 上面的不等式(2.3) 变为

$ \begin{equation} {\rm Re}\, \Big\{\frac{f(z)}{zf'(z)}\Big \}\geq \alpha, \quad\label{c} z\in D, \end{equation} $ (2.4)

(2.4) 式即为单位圆盘 $D$ $\alpha$次殆星形函数的解析定义.

定义2.3[3]  设 $f: B \rightarrow X$ $B$上的正规化局部双全纯映照, $\alpha \in (0, 1)$.如果

$ \begin{equation} \Big|\langle (D f(z))^{-1}f(z)-\frac{1}{2\alpha} z, z \rangle \Big| < \frac{1}{2\alpha}\| z \|^2, \quad z\in B, \label{5} \end{equation} $ (2.5)

则称 $f$为单位球 $B$上的 $\alpha$次星形映照.

$X = {\Bbb C}$ $B =D$时, 上面的不等式(2.5) 变为

$ \begin{equation} \Big|\frac{f(z)}{zf'(z)}-\frac{1}{2\alpha}\Big|< \frac{1}{2\alpha}, \quad z\in D, \label{d} \end{equation} $ (2.6)

(2.6) 式即为单位圆盘 $D$ $\alpha$次星形函数的解析定义.

引理2.1[5]  设 $z\in{\Bbb C}$, $\alpha\in[0, 1)$, $l, t \in[0,1]$, 且 $l\leq t$.如果 ${\rm Re}\, z\geq \alpha$, 则

$ {\rm Re}\, \frac{t z+ 1-t}{l z + 1-l}\geq \alpha. $

注2.1  将引理2.1的条件和结论里的 $“\geq”$同时换为 $“>”$, 结论仍然成立.

引理2.2[5]  设 $\alpha>0$, $w\in{\Bbb C}$ $w\not=0$, 则

$ \Big|\frac{1}{w}-\frac{1}{2\alpha}\Big|<\frac{1}{2\alpha} \;\Leftrightarrow\; {\rm Re}\, w>\alpha. $
3 主要结果

定理3.1  设 $\beta\in(-\frac{\pi}{2}, \frac{\pi}{2})$, $B$是复 ${\rm Hlibert}$空间 $X$中的单位球, $\dim X \geq n$.如果 $f$是单位圆盘 $D$上的 $\beta$型螺形函数, 且对任意 $w \in D\backslash\{0\}$, $f(w)\not=0$, 实数 $\beta_j$满足 $\beta_j \in [0,1]$, $j=1, 2, \cdots, n+1$, $\frac{\beta_1(1-\beta_1)(1-4\cos^2\beta)}{1-\beta_1+4\beta_1\cos^2\beta} \leq \beta_k \leq\beta_1$, $k=2, 3, \cdots, n+1$, 则

$ \begin{eqnarray*} F(z)&=&\Phi_{\beta _1, \cdots, \beta_{n+1}}(f)(z)\\ &=&\sum\limits_{k=1}^{n}\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta _k} \langle z, e_k\rangle e_k +\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta_{n+1}} \Big (z-\sum\limits_{k=1}^{n}\langle z, e_k\rangle e_k\Big) \end{eqnarray*} $

$B$上的 $\beta$型螺形映照, 其中 $\{e_k, k= 1, 2, \cdots, n\}$ $X$中一组单位正交向量, 即 $e_k \in X$, $\|e_k\|=1$ $\langle e_j, e_k\rangle = 0$ $(j \neq k)$, 幂函数取分支使得

$ \left(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\right)^{\beta_j}\Big|_{\langle z, e_1\rangle=0}=1, ~~ j=1, 2, \cdots, n+1. $

  由定义2.1, 只需证

$ {\rm Re}\, \langle {\rm e}^{-{\rm i}\beta}(D F(z))^{-1}F(z), z \rangle \geq 0, \quad z\in B, $

$w =: F(z)$, 则

$ \begin{equation} \langle w, e_k\rangle =\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta _k} \langle z, e_k\rangle, \quad k=1, 2, \cdots, n, \label{3.1} \end{equation} $ (3.1)

特别地

$ \begin{equation} \langle w, e_1\rangle =\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta _1} \langle z, e_1\rangle, \label{3.2} \end{equation} $ (3.2)

因此可假定 $\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle} = g(\langle w, e_1\rangle)$, 即

$ \begin{equation} g(y) = \frac{f(x)}{x}, \label{3.3} \end{equation} $ (3.3)

其中 $x=\langle z, e_1\rangle$, $y= \langle w, e_1\rangle$, 进而(3.2) 式变为

$ \begin{equation} y =\Big(\frac{f(x)}{x} \Big)^{\beta_1}x =(g(y))^{\beta_1}x. \label{3.4} \end{equation} $ (3.4)

由(3.3) 和(3.4) 式, 对 $g(y)$关于 $x$求导, 可得

$ \begin{equation} g'(y)=\displaystyle \frac{1}{(\frac{f(x)}{x})^{\beta_1}[1+\beta_1(\frac{x f'(x)}{f(x)}-1)]} \frac{x f'(x)-f(x)}{x^2} . \label{3.5} \end{equation} $ (3.5)

另一方面, 由(3.1) 式得

$ w = F(z) =\sum\limits_{k=1}^n \langle w, e_k\rangle e_k + g(y)^{\beta_{n+1}}\Big(z - \sum\limits_{k=1}^n g(y)^{-\beta_{k}}\langle w, e_k\rangle e_k \Big), $

由此可得

$ z = F^{-1}(w) = g(y)^{-\beta_{n+1}}\Big(w - \sum\limits_{k=1}^n \langle w, e_k\rangle e_k \Big) +\sum\limits_{k=1}^n g(y)^{-\beta_{k}}\langle w, e_k\rangle e_k, $

所以

$ \begin{eqnarray*} (D F(z))^{-1}F(z) &=& D F^{-1}(w) w\\ &=& D\Big(g(y)^{-\beta_{n+1}}\Big(w - \sum\limits_{k=1}^n \langle w, e_k\rangle e_k \Big) +\sum\limits_{k=1}^n g(y)^{-\beta_{k}}\langle w, e_k\rangle e_k \Big) w\\ &= &z -\beta_{n+1}g(y)^{-\beta_{n+1}-1}g'(y)\langle w, e_1\rangle \Big(w - \sum\limits_{k=1}^n \langle w, e_k\rangle e_k \Big)\\ && - \sum\limits_{k=1}^n \beta_{k}g(y)^{-\beta_{k}-1}g'(y)\langle w, e_1\rangle\langle w, e_k\rangle e_k \\ &=& (g(y)^{-\beta_{n+1}}-\beta_{n+1}g(y)^{-\beta_{n+1}-1}g'(y)y) \Big(w - \sum\limits_{k=1}^n \langle w, e_k\rangle e_k \Big)\\ && + \sum\limits_{k=1}^n (g(y)^{-\beta_{k}}-\beta_{k}g(y)^{-\beta_{k}-1}g'(y)y) \langle w, e_k\rangle e_k\\ &=&\big(1-\beta_{n+1}g(y)^{-1}g'(y)y\big) g(y)^{-\beta_{n+1}} \Big(w - \sum\limits_{k=1}^n \langle w, e_k\rangle e_k \Big)\\ && + \sum\limits_{k=1}^n \big(1-\beta_{k}g(y)^{-1}g'(y)y\big)g(y)^{-\beta_{k}} \langle w, e_k\rangle e_k. \end{eqnarray*} $

$ \begin{equation} h_{n+1}(z) =: g(y)^{-\beta_{n+1}} \Big(w - \sum\limits_{k=1}^n \langle w, e_k\rangle e_k \Big), \label{h1} \end{equation} $ (3.6)
$ \begin{equation} h_k(z) =: g(y)^{-\beta_{k}} \langle w, e_k\rangle e_k, \quad k=1, 2, \cdots, n, \end{equation} $ (3.7)
$ \begin{equation} g_k(z)=:(1-\beta_{k}g(y)^{-1}g'(y)y)=\frac{(\beta_1-\beta_k)(\frac{x f'(x)}{f(x)}-1)+1}{\beta_1(\frac{x f'(x)}{f(x)}-1)+1}, \quad k=1, 2, \cdots, n+1, \label{h2} \end{equation} $ (3.8)

易得

$ z = \sum\limits_{k=1}^{n+1} h_k(z), \qquad (D F(z))^{-1}F(z)= \sum\limits_{k=1}^{n+1} g_k(z) h_k(z), $

因此

$ \begin{eqnarray} {\rm Re}\, \langle {\rm e}^{-{\rm i}\beta}(D F(z))^{-1}F(z), z \rangle &=&{\rm Re}\, \Big\langle {\rm e}^{-{\rm i}\beta} \sum\limits_{k=1}^{n+1}g_k(z) h_k(z), \sum\limits_{k=1}^{n+1} h_k(z)\Big\rangle\nonumber\\ &=&\sum\limits_{k=1}^{n+1}{\rm Re}\, \big\{{\rm e}^{-{\rm i}\beta}g_k(z)\big\}\|h_k(z) \|^2.\label{3.6} \end{eqnarray} $ (3.9)

$w(x)=:\frac{x f'(x)}{f(x)}$, 因为

$ |x| =|\langle z, e_1\rangle| \leq \|z\|<1, $

$x \in D$, 且 $f$是单位圆盘 $D$上的 $\beta$型螺形函数, 所以

$ {\rm Re}\, \Big\{{\rm e}^{-{\rm i}\beta}\frac{f(x)}{x f'(x)}\Big \}\geq 0, $

进而 ${\rm Re}\, \{{\rm e}^{{\rm i}\beta}w(x)\}\geq 0$.令 $h(x)=:\beta_1(\frac{x f'(x)}{f(x)}-1)+1$, 注意到(3.4) 和(3.5) 式, 因此

$ \begin{eqnarray*} {\rm Re}\, \left\{{\rm e}^{-{\rm i}\beta}g_k(z)\right\} &=&{\rm Re}\, \left\{{\rm e}^{-{\rm i}\beta}\frac{(\beta_1-\beta_k)(\frac{x f'(x)}{f(x)}-1)+1} {\beta_1(\frac{x f'(x)}{f(x)}-1)+1}\right\}\\ &=&{\rm Re}\, \left\{{\rm e}^{-{\rm i}\beta}\frac{(\beta_1-\beta_k)(w(x)-1)+1}{\beta_1(w(x)-1)+1}\right\}\\ &=&{\rm Re}\, \left\{{\rm e}^{-{\rm i}\beta}\frac{[(\beta_1-\beta_k)w(x)+(1-\beta_1+\beta_k)][\beta_1\overline{w(x)}+(1-\beta_1)]} {|\beta_1(w(x)-1)+1|^2}\right\}\\ &=&{\rm Re}\, \left\{{\rm e}^{-{\rm i}\beta}\frac{1}{|h(x)|^2}\Big[\beta_1(\beta_1-\beta_k)|w(x)|^2+(1-\beta_1)(\beta_1-\beta_k)w(x)\right.\\ && \left. +\beta_1(1-\beta_1+\beta_k)\overline{w(x)} +(1-\beta_1+\beta_k)(1-\beta_1)\right]\bigg\}\\ &=&\frac{1}{|h(x)|^2}\Big[\beta_1(\beta_1-\beta_k)\cos\beta|w(x)|^2+ (1-\beta_1)(\beta_1-\beta_k){\rm Re}\, \{{\rm e}^{-{\rm i}\beta}w(x)\}\\ && +\beta_1(1-\beta_1+\beta_k){\rm Re}\, \{\overline{{\rm e}^{{\rm i}\beta}w(x)}\} +(1-\beta_1+\beta_k)(1-\beta_1)\cos\beta\Big]\\ &\geq&\frac{1}{|h(x)|^2}\Big[\beta_1(\beta_1-\beta_k)\cos\beta|w(x)|^2- (1-\beta_1)(\beta_1-\beta_k)|w(x)|\\ && +(1-\beta_1+\beta_k)(1-\beta_1)\cos\beta\Big]. \end{eqnarray*} $

$\beta_1=0$或者 $\beta_1=\beta_k$时, 易得 ${\rm Re}\, \{{\rm e}^{-{\rm i}\beta}g_k(z)\} \geq 0$.事实上, 如果 $\beta_1=0$, 则 $\beta_1=\beta_k = 0$, 进而 ${\rm Re}\, \{{\rm e}^{-{\rm i}\beta}g_k(z)\} = \cos\beta \geq 0$; 如果 $\beta_1=\beta_k$, 则

$ {\rm Re}\, \{{\rm e}^{-{\rm i}\beta}g_k(z)\}=\frac{1}{|h(x)|^2}(1-\beta_1)\cos\beta \geq 0. $

$ \beta_1(\beta_1-\beta_k)\not= 0$时, 可将

$ \beta_1(\beta_1-\beta_k)\cos\beta|w(x)|^2- (1-\beta_1)(\beta_1-\beta_k)|w(x)| +(1-\beta_1+\beta_k)(1-\beta_1)\cos\beta $

视为关于 $|w(x)|$的二次函数, 这是因为由 $\textstyle\frac{\beta_1(1-\beta_1)(1-4\cos^2\beta)}{1-\beta_1+4\beta_1\cos^2\beta} \leq \beta_k \leq\beta_1$可得 $\beta_1(\beta_1-\beta_k)\cos\beta > 0$.该二次函数的判别式为

$ \begin{eqnarray*} \Delta&=&[(1-\beta_1)(\beta_1-\beta_k)]^2-4\beta_1(\beta_1-\beta_k)\cos\beta (1-\beta_1+\beta_k)(1-\beta_1)\cos\beta\\ &=&(1-\beta_1)(\beta_1-\beta_k)\big[(1-\beta_1)(\beta_1-\beta_k)- 4\beta_1(1-\beta_1+\beta_k)\cos^2\beta\big]\\ &\leq& 0, \end{eqnarray*} $

因此由二次函数的性质得

$ \begin{equation} {\rm Re}\, \{{\rm e}^{-{\rm i}\beta}g_k(z)\} \geq 0 .\label{3.7} \end{equation} $ (3.10)

由(3.9) 和(3.10) 式, 可得

$ \begin{eqnarray*} {\rm Re}\, \langle {\rm e}^{-{\rm i}\beta}(D F(z))^{-1}F(z), z \rangle =\sum\limits_{k=1}^{n+1}{\rm Re}\, \big\{{\rm e}^{-{\rm i}\beta}g_k(z)\big\}\|h_k(z) \|^2 \geq 0. \end{eqnarray*} $

证毕.

注3.1  当 $\beta\in [-\frac{\pi}{3}, \frac{\pi}{3}]$时, $1-4\cos^2\beta\leq 0$, 由此得

$ \frac{\beta_1(1-\beta_1)(1-4\cos^2\beta)}{1-\beta_1+4\beta_1\cos^2\beta} \leq 0, $

因此定理3.1中的条件 $\frac{\beta_1(1-\beta_1)(1-4\cos^2\beta)}{1-\beta_1+4\beta_1\cos^2\beta} \leq \beta_k$自然成立.

特别地, 在定理3.1中取 $\beta=0$时, 有下面的推论.

推论3.1  设 $B$是复 ${\rm Hlibert}$空间 $X$中的单位球, $\dim X \geq n$.如果 $f$是单位圆盘 $D$上的星形函数, 且对任意 $w \in D\backslash\{0\}$, $f(w)\not=0$, 实数 $\beta_k$满足 $0 \leq \beta_k \leq\beta_1\leq1$, $k=1, 2, \cdots, n+1$, 则

$ \begin{eqnarray*} F(z)&=&\Phi_{\beta _1, \cdots, \beta_{n+1}}(f)(z)\\ &=&\sum\limits_{k=1}^{n}\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta _k} \langle z, e_k\rangle e_k +\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta_{n+1}} \Big (z-\sum\limits_{k=1}^{n}\langle z, e_k\rangle e_k\Big) \end{eqnarray*} $

$B$上的星形映照, 其中 $\{e_k, k= 1, 2, \cdots, n\}$ $X$中一组单位正交向量, 幂函数取分支使得 $\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta_j}\Big|_{\langle z, e_1\rangle=0}=1$, $j=1, 2, \cdots, n+1$.

定理3.2  设 $\alpha \in [0, 1)$, $B$是复 ${\rm Hlibert}$空间 $X$中的单位球, $\dim X \geq n$.如果 $f$是单位圆盘 $D$上的 $\alpha$次殆星形函数, 且对任意 $w \in D\backslash\{0\}$, $f(w)\not=0$, 实数 $\beta_k$满足 $0\leq \beta_k \leq\beta_1\leq 1$, $k=1, 2, \cdots, n+1$, 则

$ \begin{eqnarray*} F(z)&=&\Phi_{\beta _1, \cdots, \beta_{n+1}}(f)(z)\\ &=&\sum\limits_{k=1}^{n}\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta _k} \langle z, e_k\rangle e_k +\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta_{n+1}} \Big (z-\sum\limits_{k=1}^{n}\langle z, e_k\rangle e_k\Big) \end{eqnarray*} $

$B$上的 $\alpha$次殆星形映照, 其中 $\{e_k, k= 1, 2, \cdots, n\}$ $X$中一组单位正交向量, 幂函数取分支使得 $\left(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\right)^{\beta_j}\Big|_{\langle z, e_1\rangle=0}=1$, $j=1, 2, \cdots, n+1$.

  由定义2.2, 只需证

$ \begin{equation} {\rm Re}\, \langle (D F(z))^{-1}F(z)-\alpha z, z \rangle \geq 0, \quad z\in B. \label{3.8} \end{equation} $ (3.11)

$x=\langle z, e_1\rangle$, $y =\langle w, e_1\rangle$, $g(y) = \frac{f(x)}{x}$, 则由定理3.1的证明得

$ \begin{equation} z = \sum\limits_{k=1}^{n+1} h_k(z), \qquad (D F(z))^{-1}F(z)= \sum\limits_{k=1}^{n+1} g_k(z) h_k(z), \label{3.9} \end{equation} $ (3.12)

其中 $ h_{k}(z)$ $g_k(z)$由(3.6)-(3.8) 式给出.

$\tilde{w}(x)=:\frac{f(x)}{x f'(x)}$, 由于 $|x| =|\langle z, e_1\rangle| \leq \|z\|<1$, 即 $ x \in D$, 且 $f$是单位圆盘 $D$上的 $\alpha$次殆星形函数, 因此 ${\rm Re}\, \tilde w(x) = {\rm Re}\, \Big\{\frac{f(x)}{x f'(x)}\Big \}\geq \alpha$, 进而

$ g_k(z)=\displaystyle\frac{(\beta_1-\beta_k)\frac{x f'(x)} {f(x)}+(1-\beta_1+\beta_k)} {\beta_1\frac{x f'(x)}{f(x)}+(1-\beta_1)} =\frac{(1-\beta_1+\beta_k)\tilde w(x)+(\beta_1-\beta_k)}{(1-\beta_1)\tilde w(x)+\beta_1}. $

注意到 $0\leq 1-\beta_1\leq 1-\beta_1+\beta_k$ ${\rm Re}\, \tilde w(x)\geq \alpha$, 由引理2.1即得

$ \begin{equation} {\rm Re}\, g_k(z)\geq \alpha, \qquad k=1, 2, \cdots, n+1.\label{3.11} \end{equation} $ (3.13)

将(3.12) 和(3.13) 式带入(3.11) 式左边, 得

$ \begin{eqnarray*} {\rm Re}\, \Big\langle (D F(z))^{-1}F(z)-\alpha z, z \Big\rangle &=&{\rm Re}\, \Big\langle \sum\limits_{k=1}^{n+1}( g_k(z)-\alpha)h_k(z), \sum\limits_{k=1}^{n+1}h_k(z) \Big\rangle\\ &=&\sum\limits_{k=1}^{n+1}{\rm Re}\, ( g_k(z)-\alpha)\|h_k(z)\|^2\\ &\geq& 0 . \end{eqnarray*} $

证毕.

注3.2  在定理3.2中令 $\alpha = 0$同样可得推论3.1.

定理3.3  设 $\alpha \in (0, 1)$, $B$是复 ${\rm Hlibert}$空间 $X$中的单位球, $\dim X \geq n$.如果 $f$是单位圆盘 $D$上的 $\alpha$次星形函数, 且对任意 $w \in D\backslash\{0\}$, $f(w)\not=0$, 实数 $\beta_k$满足 $0\leq \beta_k \leq\beta_1\leq 1$, $k=1, 2, \cdots, n+1$, 则

$ \begin{eqnarray*} F(z)&=&\Phi_{\beta _1, \cdots, \beta_{n+1}}(f)(z)\\ &=&\sum\limits_{k=1}^{n}\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta _k} \langle z, e_k\rangle e_k +\Big(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\Big)^{\beta_{n+1}} \Big (z-\sum\limits_{k=1}^{n}\langle z, e_k\rangle e_k\Big) \end{eqnarray*} $

$B$上的 $\alpha$次星形映照, 其中 $\{e_k, k= 1, 2, \cdots, n\}$ $X$中一组单位正交向量, 幂函数取分支使得 $\left(\frac{f(\langle z, e_1\rangle)}{\langle z, e_1\rangle}\right)^{\beta_j}\Big|_{\langle z, e_1\rangle=0}=1$, $j=1, 2, \cdots, n+1$.

  由定义2.3, 只需证

$ \begin{equation} \Big|\langle (D f(z))^{-1}f(z)-\frac{1}{2\alpha} z, z \rangle \Big| < \frac{1}{2\alpha}\| z \|^2, \quad z\in B.\label{3.12} \end{equation} $ (3.14)

$x =\langle z$, $e_1\rangle$, $y =\langle w, e_1\rangle$, $g(y) = \frac{f(x)}{x}$, 由定理3.1的证明, 得

$ \begin{equation} z = \sum\limits_{k=1}^{n+1} h_k(z), \qquad (D F(z))^{-1}F(z)= \sum\limits_{k=1}^{n+1} g_k(z) h_k(z), \label{3.14} \end{equation} $ (3.15)

其中 $ h_{k}(z)$ $g_k(z)$由(3.6)-(3.8) 式给出.

注意到 $w(x)=\frac{x f'(x)}{f(x)}$, $|x| =|\langle z, e_1\rangle| \leq \|z\|<1, $ $ x \in D$, 且 $f$是单位圆盘 $D$上的 $\alpha$次星形函数, 因此

$ \Big|\frac{f(x)}{x f'(x)}-\frac{1}{2\alpha}\Big|< \frac{1}{2\alpha}, $

由引理2.2得, ${\rm Re}\, w(x)> \alpha$.又因为 $0 \leq \beta_1-\beta_k \leq \beta_1$, 结合引理2.1, 可得

$ {\rm Re}\, \frac{1}{g_k(z)}= {\rm Re}\, \frac{\beta_1 w(x)+(1-\beta_1)}{(\beta_1-\beta_k)w(x)+(1-\beta_1+\beta_k)} >\alpha. $

再次利用引理2.2, 得

$ \begin{equation} \Big|g_k(z)-\frac{1}{2\alpha}\Big|<\frac{1}{2\alpha}, \quad k=1, 2, \cdots, n+1.\label{3.15} \end{equation} $ (3.16)

将(3.15) 和(3.16) 式带入(3.14) 式左边, 得

$ \begin{eqnarray*} \Big|\langle (D f(z))^{-1}f(z)-\frac{1}{2\alpha} z, z \rangle \Big| &=& \Big|\Big\langle \sum\limits_{k=1}^{n+1}( g_k(z)-\frac{1}{2\alpha})h_k(z), \sum\limits_{k=1}^{n+1}h_k(z) \Big\rangle\Big|\\ &=& \Big|\sum\limits_{k=1}^{n+1}( g_k(z) -\frac{1}{2\alpha})\|h_k(z)\|^2\Big|\\ &\leq& \sum\limits_{k=1}^{n+1}\Big| g_k(z) -\frac{1}{2\alpha}\Big|\|h_k(z)\|^2\\ &<&\sum\limits_{k=1}^{n+1}\frac{1}{2\alpha}\|h_k(z)\|^2 \\ &=& \frac{1}{2\alpha} \|z\|^2. \end{eqnarray*} $

证毕.

注3.3  当 $X = {\Bbb C}^n$, $B=B^n$时, 令

$ e_k=(0, \cdots, 0, \stackrel{(k)}{1}, 0, \cdots, 0)', k=1, 2, \cdots, n, $

则有 $z=(z_1, z_2, \cdots, z_n)'$ $\langle z, e_k \rangle = z_k$, $k =1, 2, \cdots, n$.此时, R-S算子(1.5) 变为

$ \Phi_{\beta _1, \cdots, \beta_n}(f)(z) =\Big(\big(\frac{ f(z_1)}{z_1}\big)^{\beta _1}z_1, \big(\frac{ f(z_1)}{z_1}\big)^{\beta_2}z_2, \cdots, \big(\frac{f(z_1)}{z_1}\big)^{\beta _n}z_n\Big)'. $

因此, 由上面三个定理知, R-S算子 $\Phi_{\beta _1, \cdots, \beta_n}$ ${\Bbb C}^n$空间的单位球 $B^n$上分别保持 $\beta$型螺形性, $\alpha$次殆星形性和 $\alpha$次星形性.

参考文献
[1] Roper K A, Suffridge T J. Convex mappings on the unit ball of ${{\mathbb{C}}^{n}}$. J Anal Math, 1995, 65: 333–347. DOI:10.1007/BF02788776
[2] Graham I, Kohr G. Univalent mappings associated with the Roper-Suffridge extension operator. J d'Analyse Math, 2000, 81: 331–342. DOI:10.1007/BF02788995
[3] Feng S X. Some Classes of Holomorphic Mappings in Several Complex Variables[D]. Hefei:University of Science and Technology of China, 2004
[4] Liu X S. Properties of Some Subclasses of Biholomorphic Mappings in Geometric Function Theory of Several Complex Variables[D]. Hefei:University of Science and Technology of China, 2004
[5] Liu H, Xia H C. A new Roper-Suffridge extension operator on bounded complete Reinhardt domains. Acta Math Sci, 2014, 34B(6): 1835–1844.
[6] Gong S, Liu T S. On the Roper-Suffridge extension operator. J d'Analyse Math, 2002, 88: 397–404. DOI:10.1007/BF02786583
[7] Liu T S, Gong S. The family of ε starlike mappings (Ⅰ). China Ann Math, 2002, 23A(3): 273–282.
[8] Gong S, Liu T S. The generalized Roper-Suffridge extension operator. J Math Anal Appl, 2003, 284(2): 425–434. DOI:10.1016/S0022-247X(02)00400-6
[9] Liu X S, Liu T S. The generalized Roper-Suffridge extension operator on a Reinhardt domain and the unit ball in a complex Hilbert space. Chin Ann Math, 2005, 26A(5): 721–730.
[10] Muir J. A modification of the Roper-Suffridge extension operator. Comput Methods and Funct Theory, 2005, 5(1): 237–251. DOI:10.1007/BF03321096
[11] Feng S X, Liu T S. The generalized Roper-Suffridge extension operator. Acta Math Sci, 2008, 28B(1): 63–80.
[12] Wang J F, Liu T S. A modified Roper-Suffridge extension operator for some holomorphic mappings. Chin Ann Math, 2010, 31A(4): 487–496.
[13] Feng S X, Yu L. Modified Roper-Suffridge operator for some holomorphic mappings. Front Math China, 2011, 6(3): 411–426. DOI:10.1007/s11464-011-0116-y
[14] Wang J F, Gao C L. A new Roper-Suffridge extension operator on a Reinhardt domain. Abst Appl Anal, 2011, Artile ID:865496
[15] Liu X S. Modified Roper-Suffridge operator for Some subclasses of starlike mappings on Reinhardt domains. Acta Math Sci, 2013, 33B(6): 1627–1638.
[16] Li H J, Feng S X. Roper-Suffridge extension operator on a Reinhardt domain. Acta Math Sci, 2014, 34B(6): 1761–1774.
[17] Liu H, Xia H C. The generalized Roper-Suffridge operator on Reinhardt domains. Acta Math Sin (Chinese Series), 2016, 59(2): 253–266.
[18] Wang C J, Cui Y Y, Liu H. Properties of the modified Roper-Suffridge extension operators on Reinhardt domains. Acta Math Sci, 2016, 36B(6): 1767–1779.