数学物理学报  2017, Vol. 37 Issue (3): 553-561   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
傅金波
陈兰荪
基于生态环境和反馈控制的多种群竞争系统的正周期解
傅金波1, 陈兰荪2     
1. 福建师范大学闽南科技学院 福建泉州 362332;
2. 中国科学院 数学与系统科学研究院数学研究所 北京 10080
摘要:根据种群动力学原理建立了基于生态环境和反馈控制的时滞非自治Lotka-Volterra多种群竞争系统,并在反馈控制变量的构造上采用了高次非线性函数形式.利用重合度理论中Gaines和Mawhin延拓定理,给出了该系统的正周期解存在性的充分条件.利用Barbalat引理以及构造适当的Lyapunov函数,获得了该系统的正周期解存在唯一性与全局吸引性的代数判据.
关键词反馈控制系统    重合度理论    全局吸引性    正周期解    
Positive Periodic Solution of Multiple Species Comptition System with Ecological Environment and Feedback Controls
Fu Jinbo1, Chen Lansun2     
1. Minnan Science and Technology Institute Fujian Normal University, Fujian Quanzhou 362332;
2. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080
Abstract: In this paper, by using species dynamic theory, a delay nonautonomous LotkaVolterra multiple species competition system with ecological environment and feedback controls is established, and the high order nonlinear function is used in the construction of the feedback control variables. By using Continuation Theorem based on Gaines and Mawhin's coincidence degree theory, the sufficient conditions for existence of positive periodic solution of the system are obtained. Using Barbalat Lemma and constructing an appropriate Lyapunov function, the algebraic criterion for the uniqueness and global attractivity of positive periodic solutions of the system are obtained.
Key words: Feedback controls system     Coincidence degree theory     Global attractivity     Positive periodic solution    
1 引言

关于非自治生物动力系统, 现已有了大量的研究工作[1-7].自1993年Gopalsamy[8]提出带有反馈控制的动力学模型以来, 许多学者利用重合度理论研究了具有反馈控制的生物动力系统[9-15].基于反馈原理所建立的非自治系统的正周期解相当于对应地自治系统的正平衡点, 通过反馈控制变量来改变系统平衡态的大小, 借以达到人们所期望的控制目标.在自然界中, 影响种群数量变化的因素既有密度制约因素, 又有气候、污染物等非生物因素构成的非密度制约因素, 当发生流行性传染病或火灾乃至寒潮时将会导致种群有一定比例的个体死亡.因此, 研究基于生态环境和反馈控制的生物动力系统是有实际意义和应用价值的.本文建立基于生态环境和反馈控制的时滞非自治$n$种群竞争系统如下

$ \begin{equation}\label{eq:1.1} \left\{ \begin{array}{ll} \frac{{\rm d}N_{i}(t)}{{\rm d}t}=N_{i}(t)[b_{i}(t)-h_{i}(t)N_{i}(t)-\sum^n\limits_{j=1, j\neq1}a_{ij}(t)N_{j}(t)-c_{i}(t)N_{i}(t-\tau_{i})-d_{i}(t)P_{i}(t)], \\ \frac{{\rm d}P_{i}(t)}{{\rm d}t}=P_{i}(t)[r_{i}(t)N_{i}(t)-D_{i}(t)P_{i}(t)], (i=1, 2, \cdots, n), \end{array} \right. \end{equation} $ (1.1)

其中, $N_{i}(t) (i=1, 2, \cdots, n)$代表时刻$t$有竞争关系的第$i$个种群的密度, $P_{i}(t)$ $(i=1, 2, \cdots, n)$代表时刻$t$的第$i$个控制变量的密度, 假设条件如下.

(A1) $b_{i}(t), h_{i}(t), a_{ij}(t), c_{iv}(t), d_{i}(t), r_{i}(t), D_{i}(t)$ $(i, j=1, 2, \cdots, n) $都是正的以$\omega>0$为周期的连续函数;

(A2) 假设$n$个竞争种群在生态环境中因天敌、气候、有毒物、食物短缺等因素影响所导致的死亡率为$c_i(t)$, 且时滞$\tau_i$为发生该因素影响的时间间隔;

(A3) 第$i$个种群$N_i$: $b_{i}(t)$为种群的内禀增长率, $h_{i}(t)$为密度制约系数, $a_{ij}(t)(i\neq j)$为其它$n-1$个种群与之竞争公共资源的比例系数, $d_{i}(t)$为控制变量所捕获的比例系数;

(A4) 第$i$个控制变量$P_i$: $r_{i}(t)$为控制变量捕食后的转化率, $D_{i}(t)$为其密度制约系数.

${\Bbb R}_{+}^{2n}=\{(N(t), P(t))\in {\Bbb R}^{2n}:N_{i}(t)\geq0, P_{i}\geq0, i=1, 2, \cdots, n\}$, $C^{+}=C([-\tau, 0], {\Bbb R}_{+}^{2n})$表示由$[-\tau, 0]$${\Bbb R}_{+}^{2n}$的非负连续向量函数的全体, 其中

$ \tau=\max\{\tau_{i}:i=1, 2, \cdots, n\}, ~~ N=(N_{1}, N_{2}, \cdots, N_{n})^T, ~~P(t)=(P_{1}, P_{2}, \cdots, P_{n})^{T}. $

系统(1.1) 的初始条件为

$ \begin{equation} \begin{array} {l} \varphi_{i}, \psi_{i}\in C^+, ~~N_{i}(s)=\varphi_{i}(s)\geq0, ~~ P_{i}(s)=\psi_{i}(s)\geq0, \\ s\in[-\tau, 0], ~~ \varphi_{i}(0)>0, ~~\psi_{i}(0)>0, ~~(i=1, 2, \cdots, n). \end{array} \end{equation} $ (1.2)

对于正的$\omega$ -周期连续函数, 引入如下记号

$ \bar{g}=\frac{1}{\omega}\int_0^\omega g(t){\rm d}t, ~~g^L=\min\limits_{t\in[0, \omega]}\{g(t)\}, ~~g^M=\max\limits_{t\in[0, \omega]}\{g(t)\}. $

且令

$ M_{i}=\ln{\frac{\bar{b}_{i}}{h_{i}^{L}}}+2\bar{b}_{i}\omega, ~~L_{i}=\ln{\frac{r_{i}^{M}\bar{b}_{i}}{h_{i}^{L}D_{i}^{L}}}+\frac{2r_{i}^{M}\bar{b}_{i}\omega}{h_{i}^{L}}, $

本文主要在${\Bbb R}_{+}^{2n}$内研究系统$(1.1)$满足正初值条件$(1.2)$正周期解存在性和全局吸引性.

2 引理

先引入如下定理作为本文引理.

引理2.1(Mawhin's延拓定理[16]) 设$X, Y$是Banach空间$L$是指标为零的Fredholm映射, $N:\bar{\Omega}\rightarrow Z$$\bar{\Omega}$上是$L$ -紧的, 其中$\Omega$$X$中的有界开集, 如果

(a) $\forall x\in \partial\Omega\cap {\rm Dom}L, \lambda\in(0, 1), Lx\neq \lambda Nx;$

(b) $\forall x\in \partial\Omega\cap {\rm Ker}L, QNx\neq 0, $ deg$\{JQN, \Omega\cap{\rm Ker}L, 0\}\neq 0$.则方程$Lx=Nx$$\bar{\Omega}\cap {\rm Dom}L $内至少存在一个解.

设参数$\mu\in[0, 1], x=(x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n)^T\in {\Bbb R}^{2n}$, 满足方程组

$ \begin{eqnarray} \left\{ \begin{array}{ll} \bar{b}_{i}-\bar{h}_{i}{\rm e}^{x_{i}}-\mu(\bar{d}_{i}{\rm e}^{y_{i}}+\sum^n\limits_{j=1, j\neq i}\bar{a}_{ij}{\rm e}^{x_{j}}+\bar{c}_{i}{\rm e}^{x_{i}}+\bar{d}_{i}{\rm e}^{y_{i}})=0, \\ \bar{r}_{i}{\rm e}^{x_{i}}-\bar{D}_{i}{\rm e}^{y_{i}}=0, (i=1, 2, \cdots, n). \end{array} \right. \end{eqnarray} $ (2.1)

由方程组(2.1) 可得

$ \frac{1}{\bar{h}_{i}+\bar{c}_{i}} \bigg[\bar{b}_{i}-\sum^n\limits_{j=1, j\neq i}\frac{\bar{a}_{ij}\bar{b}_{j}}{\bar{h}_{j}}-\frac{\bar{d}_{i}\bar{r}_{i}\bar{b}_{i}}{\bar{D}_{i}\bar{h}_{i}} \bigg]>0, $
$ M_{0i}=\frac{\bar{b}_{i}}{\bar{h}_{i}}\geq {\rm e}^{x_{i}}\geq \frac{1}{\bar{h}_{i}+\bar{c}_{i}}\bigg[\bar{b}_{i}-\sum^n\limits_{j=1, j\neq i}\frac{\bar{a}_{ij}\bar{b}_{j}}{\bar{h}_{j}}-\frac{\bar{d}_{i}\bar{r}_{i}\bar{b}_{i}}{\bar{D}_{i}\bar{h}_{i}} \bigg]=m_{0i}, $
$ N_{0i}=\frac{\bar{r}_{i}\bar{b}_{i}}{\bar{D}_{i}\bar{h}_{i}}\geq {\rm e}^{y_{i}}\geq \frac{\bar{r}_{i}}{\bar{D}_{i}(\bar{h}_{i}+\bar{c}_{i})}\bigg[\bar{b}_{i}-\sum^n\limits_{j=1, j\neq i}\frac{\bar{a}_{ij}\bar{b}_{j}}{\bar{h}_{j}}-\frac{\bar{d}_{i}\bar{r}_{i}\bar{b}_{i}}{\bar{D}_{i}\bar{h}_{i}} \bigg] =n_{0i}. $

于是

$ l_{0i}=\ln m_{0i}\leq x_{i}\leq\ln M_{0i}=L_{0i}, l^*_{0i}=\ln n_{0i}\leq y_i\leq\ln N_{0i}=L^*_{0i}. $

$A_{0i}=\max\limits_{1\leq i\leq n}\{|l_{0i}|, |L_{0i}|\}, A^*_{0i}=\max\limits_{1\leq i\leq n}\{|l^*_{0i}|, |L^*_{0i}|\}$, 显然$A_{0i}, A^*_{0i}(i=1, 2, \cdots, n)$与参数$\mu$无关且

$ |x_i|\leq A_{0i}, |y_i|\leq A^*_{0i}, ||x||=\sum^n\limits_{i=1}|x_i|+\sum^n\limits_{i=1}|y_i|\leq\sum^n\limits_{i=1}A_{0i}+\sum^n\limits_{i=1}A^*_{0i}:=A_0. $

综上讨论, 有如下结论.

引理2.2 如果

$ \rho_{i}=\bar{b}_{i}-\sum^n\limits_{j=1, j\neq i}\frac{\bar{a}_{ij}\bar{b}_{j}}{\bar{h}_{j}}-\frac{\bar{d}_{i}\bar{r}_{i}\bar{b}_{i}}{\bar{D}_{i}\bar{h}_{i}}>0, ~~i=1, 2, \cdots, n, $

则方程组(2.1) 存在一个与参数$\mu$无关的常数$A_0>0$使得$||x||\leq A_0$.

由文献[17]的类似方法易得下面的引理.

引理2.3 设$D=\{(N(t), P(t))^T\in {\Bbb R}_+^{2n}:k_i\leq N_i(t)\leq K_i, \tilde{k}_i\leq P_i(t)\leq \tilde{K}_i, $ $i=1, 2, \cdots, n\}$.若$S_i=b_i^L-\sum^n\limits_{j=1, j\neq i}a_{ij}^MK_j-c_{i}^MK_i-d_i^M\tilde{K}_i>0, i=1, 2, \cdots, n, $则对任何解$(N(t), P(t))=(N_1(t), N_2(t), \cdots, N_n(t), P_1(t), P_2(t), \cdots, P_n(t)), $存在$ T>0, $$t>T$时有$(N(t), P(t))\in D.$其中

$ K_{i}=\frac{b_{i}^M}{h_{i}^L}+\varepsilon, ~~k_i= \frac{S_{i}}{h_{i}^M}-\varepsilon, ~~ \tilde{K}_{i}=\frac{r_{i}^MK_i}{D_{i}^L}+\varepsilon, ~~ \tilde{k}_i=\frac{r_{i}^Lk_i}{D_{i}^M}-\varepsilon, $

这里$\varepsilon$为任意小的正数.

引理2.4  (Barbalat引理[18])设$f$是定义在$[0, +\infty)$上的非负函数, 在$[0, +\infty)$上可积, 而且在$[0, +\infty)$上一致连续, 则$\lim\limits_{t\rightarrow+\infty}f(t)=0.$

3 正周期解的存在性

定理3.1 如果除初值(1.2) 条件外, 还满足条件

$ S_i^*=\bar{b}_i-\sum^n\limits_{j=1, j\neq i}a_{ij}^M{\rm e}^{M_j}-d_i^M{\rm e}^{L_i}>0, i=1, 2, \cdots, n. $

则系统(1.1) 至少存在一个$\omega$-周期正解.

 作变换$N_{i}(t)={\rm e}^{x_i(t)}, P_i(t)={\rm e}^{y_i(t)}, (i=1, 2, \cdots, n), $将周期系统(1.1) 化为如下等价系统

$ \begin{eqnarray} \left\{ \begin{array}{ll} x'_i(t)=b_i(t)-h_i(t){\rm e}^{x_i(t)}-\sum^n\limits_{j=1, j\neq i}a_{ij}(t){\rm e}^{x_j(t)}-c_{i}(t){\rm e}^{x_i(t-\tau_i)}-d_i{\rm e}^{y_i(t)}:=\Lambda_i(x, t), \\ y'_i(t)=r_i(t){\rm e}^{x_i(t)}-D_i(t){\rm e}^{y_i(t)}:=\Delta_i(x, t), (i=1, 2, \cdots, n). \end{array} \right. \end{eqnarray} $ (3.1)

$x(t)=(x_1(t), x_2(t), \cdots, x_n(t), y_1(t), y_2(t), \cdots, y_n(t))^T, X=Z=\{x\in C(R, {\Bbb R}^{2n}):x(t+\omega)=x(t)\}, $范数为

$ \|x\|=\sum^n\limits_{i=1}\max\limits_{t\in[0, \omega]}|x_i(t)|+\sum^n\limits_{i=1}\max\limits_{t\in[0, \omega]}|y_i(t)|, $

其中$|\cdot|$表示Euelid范数, 则在范数$\|\cdot\|$$X, Z$都是Banach空间.

定义

$ Lx=x', Nx=(\Lambda_1(x, t), \Lambda_2(x, t), \cdots, \Lambda_n(x, t), \Delta_1(x, t), \Delta_2(x, t), \cdots, \Delta_n(x, t))^T, $
$ Px=Qx=\frac{1}{\omega}\int_0^\omega x(t){\rm d}t, x\in X. $

$ {\rm Dom}L=\{x\in X:x\in C^1(R, {\Bbb R}^{2n})\}\subset X\rightarrow X. $

易知$P$$Q$是连续投影算子且${\rm Im}P={\rm Ker}L, {\rm Im}L={\rm Ker}Q={\rm Im}(I-Q).$进而可知Ker$L={\rm Im}P={\Bbb R}^{2n}, {\rm Im}L={\rm Ker}Q=\{x\in X:\bar{x}_i=0, \bar{y}_i=0, i=1, 2, \cdots, n\}$$X$的闭子集, dim${\rm Ker}L=2n=\dim (Z/{\rm Im}L), $$L$是指标为零Fredholm算子.定义$L$的广义逆为$K_P:{\rm Im}L\rightarrow {\rm Dom}L\bigcap {\rm Ker}P$如下

$ K_P(x)=\int_0^tx(s){\rm d}s-\frac{1}{\omega}\int_0^\omega\int_0^tx(s){\rm d}s{\rm d}t. $

于是

$ QNx=\left(\frac{1}{\omega}\int_0^t\Lambda_1(x, s){\rm d}s, \cdots, \frac{1}{\omega}\int_0^t\Lambda_n(x, s){\rm d}s, \frac{1}{\omega}\int_0^t\Delta_1(x, s){\rm d}s, \cdots, \frac{1}{\omega}\int_0^t\Delta_n(x, s){\rm d}s \right)^T, $
$ K_P(I-Q)Nx=\left(\varphi_1(x, t), \cdots, \varphi_2(x, t), \psi_1(x, t), \cdots, \psi_n(x, t)\right)^T, $

其中

$ \varphi_i(x, t)=\int_0^t\Lambda_i(x, s){\rm d}s-\frac{1}{\omega}\int_0^\omega\int_0^t\Lambda_i(x, s){\rm d}s{\rm d}t- \Big(\frac{t}{\omega}-\frac{1}{2}\Big)\int_0^t\Lambda_i(x, s){\rm d}s, $
$ \psi_i(x, t)=\int_0^t\Delta_i(x, s){\rm d}s-\frac{1}{\omega}\int_0^\omega \int_0^t\Delta_i(x, s){\rm d}s{\rm d}t- \Big(\frac{t}{\omega}-\frac{1}{2}\Big)\int_0^t\Delta_i(x, s){\rm d}s, $

利用Lebesgue收敛定理可以证明$QN$$K_P(I-Q)N$是连续的.不难证明, 对$X$中的任何开的有界的子集$\Omega$, $QN(\bar{\Omega})$$\bar{K_P(I-Q)N(\bar{\Omega})}$是相对紧的.因此, 对$X$的任何开的有界子集$\Omega$, $N$$\bar{\Omega}$上是$L$紧的.对应算子方程$Lx=\lambda Nx, \lambda\in(0, 1)$

$ \begin{equation}\label{eq:3.2} x'_i(t)=\lambda \Lambda_i(x, t), y'_i(t)=\lambda \Delta_i(x, t). \end{equation} $ (3.2)

对系统$(3.2)$$[0, \omega]$上取积分得

$ \begin{equation} \int_0^\omega \bigg[h_i(t){\rm e}^{x_i(t)}+\sum^n\limits_{j=1, j\neq i}a_{ij}(t){\rm e}^{x_j(t)}+c_{i}(t){\rm e}^{x_i(t-\tau_i)}+d_i{\rm e}^{y_i(t)} \bigg]{\rm d}t=\bar{b}_i\omega. \end{equation} $ (3.3)
$ \begin{equation} \int_0^\omega r_i(t){\rm e}^{x_i(t)}{\rm d}t=\int_0^\omega D_i(t){\rm e}^{y_i(t)}{\rm d}t. \end{equation} $ (3.4)

由系统$(3.2)$和式(3.3)-(3.4) 有

$ \begin{equation} \int_0^\omega |x'_i(t)|{\rm d}t=\lambda\int_0^\omega|\Lambda_i(x, t)|{\rm d}t <2\int_0^\omega b_i(t){\rm d}t=2\bar{b}_i\omega. \end{equation} $ (3.5)
$ \begin{equation} \int_0^\omega |y'_i(t)|{\rm d}t=\lambda\int_0^\omega|\Delta_i(x, t)|{\rm d}t <2\int_0^\omega r_i(t){\rm e}^{x_i(t)}{\rm d}t. \end{equation} $ (3.6)

由式$(3.3)$解得

$ \begin{equation} \int_0^\omega {\rm e}^{x_i(t)}{\rm d}t <\frac{\bar{b}_i\omega}{h_{i}^L}. \end{equation} $ (3.7)

进而, 由式(3.6)-(3.7) 有

$ \begin{equation} \int_0^\omega |y'_i(t)|{\rm d}t < 2r_i^M\int_0^\omega {\rm e}^{x_i(t)}{\rm d}t <\frac{2r_i^M\bar{b}_i\omega}{h_{i}^L}. \end{equation} $ (3.8)

因为$x\in X$所以存在$\xi_i, \zeta_i, \eta_i, \sigma_i\in[0, \omega]$使得

$ \begin{equation} \begin{array}{l} x_i(\eta_i)=\max\limits_{t\in[0, \omega]}x_i(t), ~~x_i(\xi_i)=\min\limits_{t\in[0, \omega]}x_i(t), \\ y_i(\sigma_i)=\max\limits_{t\in[0, \omega]}y_i(t), ~~ y_i(\zeta_i)=\min\limits_{t\in[0, \omega]}y_i(t), ~~i=1, 2, \cdots, n. \end{array} \end{equation} $ (3.9)

一方面, 由式(3.7) 和(3.9) 解得

$ \begin{equation} x_i(\xi_i) <\ln{\frac{\bar{b}_i}{h_{i}^L}}. \end{equation} $ (3.10)

于是, $\forall t\in[0, \omega]$

$ \begin{equation} x_i(t)\leq x_i(\xi_i)+\int_0^\omega |x'_i(t)|{\rm d}t<\ln{\frac{\bar{b}_i}{h_{i}^L}}+2\bar{b}_i\omega:=M_i. \end{equation} $ (3.11)

由式(3.4) 和(3.7) 解得

$ \begin{equation} y_i(\zeta_i)<\ln{\frac{r_i^M\bar{b}_i}{h_{i}^LD_i^L}}. \end{equation} $ (3.12)

因此, $\forall t\in[0, \omega]$

$ \begin{equation} y_i(t)\leq y_i(\zeta_i)+\int_0^\omega |y'_i(t)|{\rm d}t<\ln{\frac{r_i^M\bar{b}_i}{h_{i}^LD_i^L}}+\frac{2r_i^M\bar{b}_i\omega}{h_{i}^L}:=L_i. \end{equation} $ (3.13)

另一方面, 利用式(3.11) 和(3.13), 由式(3.3) 解得

$ \begin{equation} x_i(\eta_i)>\ln{\frac{S^*_i}{h_{i}^M+c^M_i}}, \end{equation} $ (3.14)

其中

$ S_i^*=\bar{b}_i-\sum^n\limits_{j=1, j\neq i}a_{ij}^M{\rm e}^{M_j}-d_i^M{\rm e}^{L_i}>0, i=1, 2, \cdots, n. $

这样, $\forall t\in[0, \omega]$

$ \begin{equation}x_i(t)\geq x_i(\eta_i)-\int_0^\omega |x'_i(t)|{\rm d}t>\ln{\frac{S_i^*}{h_{i}^M+c^M_i}}-2\bar{b}_i\omega:=m_i. \end{equation} $ (3.15)

再由式(3.4) 和(3.14), 可得

$ \begin{equation} y_i(\sigma_i)>\ln{\frac{r_i^LS^*_i}{h_{i}^MD_i^M}} \end{equation} $ (3.16)

进而, $\forall t\in[0, \omega]$

$ \begin{equation} y_i(t)\geq y_i(\sigma_i)-\int_0^\omega |y'_i(t)|{\rm d}t>\ln{\frac{r_i^LS^*_i}{h_{i}^MD_i^M}}-\frac{2r_i^M\bar{b}_i\omega}{h_{i}^L}:=l_i. \end{equation} $ (3.17)

综上, 由式(3.11), (3.13), (3.15) 和(3.17) 有

$ \max\limits_{t\in[0, \omega]}|x_i(t)|\leq\max\{|m_i|, |M_i|\}:=A_{1i}, \max\limits_{t\in[0, \omega]}|y_i(t)|\leq\max\{|l_i|, |L_i|\}:= A_{2i}, i=1, 2, \cdots, n. $

显然$A_{1i}, A_{2i}, (i=1, 2, \cdots, n)$不依赖于参数$\lambda$.令$A=\sum^n\limits_{i=1}A_{1i}+\sum^n\limits_{i=1}A_{2i}+A_0$这里$A_0$由引理$2.2$所给出的.取$\Omega=\{x\in X:||x||<A\}, $$\lambda\in(0, 1), x\in\partial \Omega\bigcap {\rm Ker}L=\partial\Omega\bigcap {\Bbb R}^{2n}$$Lx\neq\lambda Nx$, 故$\Omega$满足引理$2.1$条件(a).当$x\in\partial\Omega\bigcap {\rm Ker}L$时, $x$${\Bbb R}^{2n}$中的常值向量且$||x||=A, $由引理$2.1$$QNx\neq0$构造映射$H_\mu(x)=\mu QNx+(1-\mu)G_x, \mu\in[0,1], $这里

$ G_x={(\bar{b}_i-\bar{h}_{i}{\rm e}^{x_{i}})_{n\times 1} \choose (\bar{r}_i{\rm e}^{x_i}-\bar{D}_i{\rm e}^{y_i})_{n\times 1}}. $

由引理2.2知, 对于$\mu\in[0,1], x\in\partial\Omega\bigcap {\rm Ker}L, H_\mu(x)\neq0$, 所以$H_\mu(x)$是一个同伦映射.根据同伦不变性, 我们取恒同映射$J=I$于是

$ {\rm deg}\{JQN, \Omega\cap {\rm Ker}L, 0\}={\rm deg}\{H_{1}(x), \Omega\cap {\rm Ker}L, 0\}= {\rm deg}\{H_{0}(x), \Omega\cap {\rm Ker}L, 0\}, $

由于代数方程组

$ \begin{eqnarray*} \left\{ \begin{array}{ll} \bar{b}_i-\bar{h}_{i}{\rm e}^{x_{i}}=0, \\ \bar{r}_i{\rm e}^{x_i}-\bar{D}_i{\rm e}^{y_i}=0, (i=1, 2, \cdots, n) \end{array} \right. \end{eqnarray*} $

存在唯一解$(x_1^*, x_2^*, \cdots, x_n^*, y_1^*, y_2^*, \cdots, y_n^*)^T, $其中

$ x_i^*=\ln{\frac{\bar{b}_i}{\bar{h}_{i}}}, ~~y_i^*=\ln{\frac{\bar{r}_i\bar{b}_i}{\bar{h}_{i}\bar{D}_i}}, ~~i=1, 2, \cdots, n. $

所以直接计算得

$ {\rm deg}\{JQN, \Omega\cap {\rm Ker}L, 0\}={\rm deg}\{G_{x}, \Omega\cap {\rm Ker}L, 0\}={\rm sgn}\bigg\{ \prod^n\limits_{i=1}\bar{a}_{ii}\bar{D}_{i}{\rm e}^{x_{i}^{*}+y_{i}^{*}} \bigg\}=1\neq0. $

这样$\Omega$满足引理$2.1$的条件(b), 因此方程$Lx=Nx$${\rm Dom}L\bigcap\bar{\Omega}$至少有一个解, 进而由变换$N_{i}(t)={\rm e}^{x_i(t)}, P_i(t)={\rm e}^{y_i(t)}$ $(i=1, 2, \cdots, n), $知系统$(1.1)$${\rm Dom}L\bigcap\bar{\Omega}$内至少存在一个$\omega$ -周期正解.证毕.

4 正周期解的全局吸引性

定理4.1 如果除初值(1.2) 和定理3.1的条件外, 还满足条件

$ \beta_i=h_{i}^L-r^M_i+c_{i}^M-\sum^n\limits_{j=1, j\neq i}a_{ij}^M>0, \eta_i=D_i^L-d_i^M>0, i=1, 2, \cdots, n, $

则系统(1.1) 存在唯一的$\omega$ -周期正解且为全局吸引的.

 设$(N(t), P(t))$$(\widetilde{N}(t), \widetilde{P}(t))$分别是系统(1.1) 的周期正解和任意正解, 其中

$ \widetilde{N}(t)=(\widetilde{N}_1(t), \cdots, \widetilde{N}_n(t))^T, \widetilde{P}(t)=(\widetilde{P}_1(t), \cdots, \widetilde{P}_n(t))^T. $

由引理2.3知存在$T>0$, 当$t>T$时, $(N(t), P(t))\in D, (\widetilde{N}(t), \widetilde{P}(t))\in D$构造Lyapunov函数

$ V_i(t)=|\ln{N_i(t)}-\ln{\widetilde{N}_i(t)}|+|\ln{P_i(t)}-\ln{\widetilde{P}_i(t)}| +c_i^M\int_{t-\tau_i}^t |N_i(s)-\tilde{N}_i(s)|{\rm d}s, $

直接计算系统(1.1) 的的右上导数, 得

$ \begin{eqnarray*} V'_i(t)&=&{\rm sgn}(N_i(t)-\widetilde{N}_i(t))\{-h_i(t)(N_i(t)-\widetilde{N}_i(t)) \\ && -\sum^n\limits_{j=1, j\neq i}a_{ij}(t)(N_j(t)-\widetilde{N}_j(t)) -c_{i}(t)(N_i(t-\tau_{i})-\widetilde{N}_i(t-\tau_{i})) \\ && -d_i(t)(P_i(t)-\widetilde{P}_i(t))\} +{\rm sgn}(P_i(t)-\widetilde{P}_i(t))\{r_i(t)(N_i(t)-\widetilde{N}_i(t)) \\ &&-D_i(t)(P_i(t)-\widetilde{P}_i(t))\} +c_i^M|N_i(t)-\widetilde{N}_i(t)|-c_i^M|N_i(t-\tau_i)-\widetilde{N}_i(t-\tau_i)| \\ &\leq& -(h_{i}^L-r_i^M-c_{i}^M)|N_i(t)-\widetilde{N}_i(t)| \\ && +\sum^n\limits_{j=1, j\neq i}a_{ij}^M|(N_j(t)-\widetilde{N}_j(t))|-(D_i^L-d_i^M)|P_i(t)-\widetilde{P}_i(t)|. \end{eqnarray*} $

定义Lyapunov函数

$ V(t)=V_1(t)+V_2(t)+\cdots+V_n(t), $

据此, 计算系统(1.1) 的右上导数为

$ V'(t)\leq-\sum^n\limits_{i=1}\bigg[h_{i}^L-r^M_i-c_{i}^M-\sum^n\limits_{j=1, j\neq i}a_{ij}^M\bigg]|N_i(t)-\widetilde{N}_i(t)| -\sum^n\limits_{i=1}(D_i^L-d_i^M)|P_i(t)-\widetilde{P}_i(t)|. $

$\alpha=\min\limits_{1\leq i\leq n}\{\beta_i, \eta_i\}$, 从$T$$t$积分得

$ V(t)+\alpha\int_T^t \bigg\{\sum^n\limits_{i=1}[|N_i(s)-\widetilde{N}_i(s)|+|P_i(s)-\widetilde{P}_i(s)|] \bigg\}{\rm d}s<V(T)<+\infty, t>T, $
$ \sum^n\limits_{i=1}[|N_i(t)-\widetilde{N}_i(t)|+|P_i(t)-\widetilde{P}_i(t)|]\in L^1[T, +\infty), $
$ \sup\int_T^t \bigg\{\sum^n\limits_{i=1}[|N_i(s)-\widetilde{N}_i(s)|+|P_i(s)-\widetilde{P}_i(s)|] \bigg \}{\rm d}s<\frac{V(T)}{\alpha}<+\infty. $

由系统(1.1) 的一致持久性及其解的导数有界性知

$ \sum^n\limits_{i=1}[|N_i(t)-\widetilde{N}_i(t)|+|P_i(t)-\widetilde{P}_i(t)|] $

$[0.+\infty]$上是一致连续的, 根据引理2.4知

$ \lim\limits_{t\rightarrow+\infty}\sum^n\limits_{i=1}[|N_i(t)-\widetilde{N}_i(t)|+|P_i(t)-\widetilde{P}_i(t)|]=0. $

综上, 系统(1.1) 在区域$D$内存在唯一的$\omega$ -周期正解且为全局吸引的.证毕.

参考文献
[1] 范猛, 王克. 具有遗传效应单种群模型的正周期解. 应用数学, 2000, 13(2): 58–61.
Fan M, Wang K. Periodic solutions of single population model with hereditary effects. Mathematica Applicata (Chinese Series), 2000, 13(2): 58–61.
[2] 崔景安. 时滞Lotka-Volterra系统的持久性和周期解. 数学学报, 2004, 47(3): 511–519.
Cui J A. Permanence and periodic solution of Lotka-Volterra system with time delay. Acta Mathematica Sinica (Chinese Series), 2004, 47(3): 511–519.
[3] Liu Z J. Effect of toxicants on a two-species competitve system with multi-delays. Mathematics Applicata, 2001, 14(Supplement): 121–125.
[4] Chen F D, Shi J L. Periodicity in a logistic type system with several delays. Computers and Mathematics with Applications, 2004, 48: 35–44. DOI:10.1016/j.camwa.2004.02.001
[5] Chen F D, Shi J L, Chen X X. Periodicity in a Lotka-Volterra facultative mutualism system with several delays. Chinese Journal of Engineering Mathematics, 2004, 21(3): 377–380.
[6] 程荣福, 常亮. 具无限时滞和非单调功能性反应的捕食系统的多周期解. 吉林大学学报(理学版), 2010, 48(5): 761–765.
Cheng R F, Chang L. Multiple periodic solution of a predator-prey system with infinite delay and nonmonotonic functional response. Journal of Jilin University (Science Edition, Chinese Series), 2010, 48(5): 761–765.
[7] Wei F Y, Wang S H. Positive periodic solutions of nonautonomous competitive systems with infinite delay and diffusion. Journal of Biomathematics, 2012, 27(2): 193–202.
[8] Gopalsamy K, Weng P X. Feedback regulation of Logistic growth. Internat Math and Math Sci, 1993, 16: 177–192. DOI:10.1155/S0161171293000213
[9] 丁孝全, 程述汉. 具反馈控制的时滞阶段结构种群模型的稳定性. 生物数学学报, 2006, 21(2): 225–232.
Ding X Q, Cheng S H. The stability of a delayed stage-structured population growth model with feedback controls. Journal of Biomathematics (Chinese Series), 2006, 21(2): 225–232.
[10] 房辉, 王志成. 具投放的中立型时滞竞争扩散系统正周期解的存在性. 数学物理学报, 2008, 28(4): 719–730.
Fang H, Wang Z C. Existence of positive periodic solutions of a neutral delay competition model with diffusion and stock. Acta Mathematica Scientia, 2008, 28(4): 719–730.
[11] 赵明, 程荣福. 一类具生物控制和比率型功能反应的食物链系统周期解的存在性. 吉林大学学报(理学版), 2009, 47(4): 730–736.
Zhao M, Cheng R F. Existence of periodic solution of a food chain system with biocontrol and ratio functional response. Journal of Jilin University (Science Edition, Chinese Series), 2009, 47(4): 730–736.
[12] 秦发金. 一类具有收获率和扩散的时滞阶段结构捕食系统的多重正周期解. 数学物理学报, 2009, 29(6): 1613–1622.
Qin F J. Multiple periodic solutions for a delayed stage-structure predator-prey systems with harvesting rate and diffusion. Acta Mathematica Scientia, 2009, 29(6): 1613–1622.
[13] 何继伟. 具有无穷时滞和反馈控制的Lotka-Volterra捕食系统的生存分析. 北华大学学报(自然科学版), 2010, 11(4): 293–296.
He J W. Survival analysis of Lotka-Volterra prey system with infinite delays and feedback controls. Journal of Beihua University (Natural Science, Chinese Series), 2010, 11(4): 293–296.
[14] 程荣福. 具有脉冲的非自治多种群Lotka-Volterra竞争系统的周期性. 北华大学学报(自然科学版), 2012, 13(1): 1–8.
Cheng R F. Periodicity of a nonautonomous multi-species Lotka-Volterra competitive system with impulse. Journal of Beihua University (Natural Science, Chinese Series), 2012, 13(1): 1–8.
[15] 叶辉, 蔡东汉. 周期性果蝇模型解的整体稳定性. 数学物理学报, 2013, 33(6): 1013–1021.
Ye H, Cai D H. Global attractivity in a periodic nicholsons blowflies model. Acta Mathematica Scientia (Chinese Series), 2013, 33(6): 1013–1021.
[16] Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Berlin:SpringerVerlag, 1977: 40–45.
[17] 王静, 王克. 非自治一捕食者-两互惠食饵模型的动力学行为. 东北师大学报(自然科学版), 2005, 37(4): 1–6.
Wang J, Wang K. Dynamics of one predaton-two cooperative prey model. Journal of Northeast Normal University (Chinese Series), 2005, 37(4): 1–6.
[18] Barbalat I. System dequation differentilles dosecilltion nonlinears. Rev Math Pure et Appl, 1959, 4: 267–270.