数学物理学报  2017, Vol. 37 Issue (2): 374-389   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
殷春
周士伟
吴姗姗
程玉华
魏修岭
王伟
带有离散分布式延迟神经网络的不等时滞分割稳定性分析方法
殷春, 周士伟, 吴姗姗, 程玉华, 魏修岭, 王伟     
电子科技大学自动化工程学院 成都 611731
摘要:该文解决了带有离散分布式延迟的神经网络的稳定性分析问题,提出了一种不同于以前方法的新不等时滞分割方法.通过将延迟区间不等地分成多个递减子区间,从而建立一个新颖的包含三次积分项的Lyapunov-Krasovskii函数.其与一些有效的数学技术和新不等时滞分割方法综合在一起,使得新的稳定性标准已被提议减少其保守性.数值仿真实例证明了该文所提出方法的有效性.
关键词神经网络    不等时滞分割    离散延迟分布    LMI划分    
New Unequal Delay Partitioning Methods to Stability Analysis for Neural Networks with Discrete and Distributed Delays
Yin Chun, Zhou Shiwei, Wu Shanshan, Cheng Yuhua, Wei Xiuling, Wang Wei     
College of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731
Abstract: This paper deal with the problems of stability analysis for neural networks with with discrete and distributed delays. It addresses the newly unequal delay-partitioning methods which is different from previous methods. By unequally separating the delay interval into multiple diminishing subintervals, a novel Lyapunov-Krasovskii functionals is established including triple integrals terms. And together with some effective mathematical techniques and newly unequal delay-partitioning methods, the new stability criterion has been proposed to reduce the conservatism. Some numerical simulations are given to demonstrate the effectiveness of the proposed techniques comparing with some existing results.
Key words: Neural networks     Unequal delay-partitioning     Discrete and distributed delays     LMI approach    
1 引言

神经网络是近几年的一个热门话题, 它已被广泛应用到科学和工程的各个领域, 如信号处理、模型识别、关联存储器、电路设计和并行计算[1-5].众所周知, 由于放大器的有限切换速度, 时间延迟不可避免地出现在神经网络中, 并且可能导致系统振荡和不稳定性.因此, 时间延迟神经网络的稳定性分析问题是神经网络领域中的重点.最近, 许多研究结果已经提出了稳定性问题的处理, 并且带有时间延迟的神经网络的性能已经得到改进[6-12, 14-15].

时滞分割作为将延迟区间划分为许多子区间的延迟分解方法可以获得较低保守性的稳定性条件.前面的方法是Lyapunov-Krasovskii函数在整个区间的导数, 其使用时滞分割法将范围向下到每个子区间.在2001年, 文献[9]提出了第一个有效延迟划分的理念, 它让我们知道可以降低稳定性标准的保守性方法.当分区越来越细时, 矩阵公式和计算负担变得越来越复杂, 但它可以显示最大延迟边界的改善.

最近, 用于神经网络稳定性分析的时滞分割法已经得到了大量的研究结果, 其以线性矩阵不等式的形式求导而得并且通过基于优化的技术可以容易地求解.在文献[13, 17, 19-20]中, 提出了广义的时滞分割方法, 它只是划分了时间延迟区间的一部分并且分解成l个等效段, 并且使用一些常规方式来处理Lyapunov-Krasovski函数, 诸如在每个延迟子区间中利用不同的自由加权矩阵.文献[25]中提出了一种用于中性型神经网络的延迟相关稳定性分析的延迟分割方法, 这使得时间延迟区间[0, r]被分解为l个等效段, 但时间延迟不是变量.与其他发展相比, 文献[18]中提出的方法表现出显著的优势, 它首先假设在某个特定子区间的时间延迟, 然后延伸到任意子区间.然而, 文献[18]中提出的Lyapunov-Krasovskii函数仅包括一些简单的积分和双重积分项, 并不包含三重积分项.增加一些三重积分的Lyapunov-Krasovskii函数对于降低保守性是非常有用的.使用延迟分解方法和互逆凸技术, 对于伴有时变延迟的神经网络, 一些改进的稳定性标准在文献[23-24]中已经得到了发展.当分区变得更精细时, 保守性显著降低.为了进一步加强研究结果, 本文采用新不等时滞分割法, 并通过引入变量$\rho_{k}(t)$ ($\rho_{k}(t)=\frac{\tau(t)-\tau^{-}}{r \times 2^{r+1-k}}$) 以确定$\tau(t)$作为子区间的时间延迟.

参考上面提到的讨论, 第一次尝试研究新不等时滞分割法以处理具有离散和分布式延迟的神经网络稳定性分析的问题.在本文中, 通过构造一个新的Lyapunov-Krasovskii函数, 其中一些项包含三重积分, 比如

$ \int_{-\tau^{-}-\frac{j_{i}}{2^{i}}\delta-(i-1)\delta}^{-\tau^{-} -\frac{j_{i}-1}{2^{i}}\delta-(i-1)\delta}\int_{\eta}^{-\tau^{-} -\frac{j_{i}-1}{2^{i}}\delta-(i-1)\delta} \int_{t+\theta}^{t}\dot{x}^T(s)U_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta {\rm d}\eta, $
$ \int_{-\tau^{-}-\frac{j_{i}}{2^{i}}\delta-(i-1)\delta}^{-\tau^{-}-\frac{j_{i}-1}{2^{i}} \delta-(i-1)\delta}\int_{-\tau^{-}-\frac{j_{i}}{2^{i}}\delta -(i-1)\delta}^{\eta}\int_{t+\theta}^{t}\dot{x}^T(s)W_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta {\rm d}\eta, $

这在改进低保守性的结果中起到重要作用.此外, 新不等时滞分割法还用来分析神经网络全局渐近稳定性的问题.首先, 通过使用新不等时滞分割法, 将时间延迟间隔$[\tau^{-}, \tau^{+}]$分为$r$段, 然后我们将每个子区间$[\tau^{-}+(k-1)\delta, \tau^{-}+k\delta]$划分为$2^{r+1-k}$段.其次, 与文献[25]相比, 没有解释子区间中的时变延迟$\tau(t)$.为了得到准确的结果, 本文通过引入时间变量$\rho_{k}(t)$来细分时间延迟区间$[\tau^{-}, \tau^{+}]$.在不等时滞分割法中, 每个子区间中存在不同的$\rho_{k}(t)$.这是本文的亮点, 在之前的文献中从来没有提出过.第三, 延迟区间$[\tau^{-}, \tau^{+}]$被分解为$2^{r+3}-2$个子区间, 每个子区间不相等, 在每个子区间中应用牛顿莱布尼兹公式, 并且选择不同的无权矩阵, 这将导致较低保守性的结果.与文献[18, 23-25]相比, 新不等时滞分割法是本文的亮点.此外, 与以前的结果相比, 为了降低保守性的目的, 一个新积分不等式被应用在互逆凸不等式中.通过使用线性矩阵不等式来评估低保守性的稳定性标准.最后, 给出了一些示例以显示所提方法的有效性.注:该文中, $\mathbb{R} ^n$表示$n$维欧几里德空间, $\mathbb{R} ^{n \times n}$是所有$n \times n$实矩阵的集合.对于对称矩阵$X$, 符号$X> 0$ ($X\ge 0$) 意味着是实对称正定矩阵 (正半定), 对于对称矩阵$X$$Y$, 符号$X> Y$ ($X\ge Y$) 意味着矩阵$X-Y$是正定的 (非负的).矩阵$A^T$是矩阵$A$的转置, 符号$*$被用作包含对称的项的省略, $I$表示具有适当维度的单位矩阵, $O_{m \times n}$表示具有$m \times n$维的零矩阵. $col[x_{1}, x_{2}, \cdots, x_{n}]$表示$[x_{1}^{T}, x_{2}^{T}, \cdots, x_{n}^{T}]^{T}$.如果没有明确说明, 则假设矩阵具有兼容的维度.

2 引理

对于一个离散分布式延迟神经网络模型

$ \begin{eqnarray} \dot{x}(t)=-Ax(t)+Bf(x(t))+Cf(x(t-\tau(t)))+D\int_{t-d(t)}^{t}f(x(s)){\rm d}s, \end{eqnarray} $ (2.1)

其中$x(t)=[x_1(t), \cdots, x_{n}(t)]^T\in \Re^n$是神经元状态向量; $f(x(\cdot))=[f_{1}(x_1(\cdot)), \cdots, f_{n}(x_n(\cdot))]^T \in \Re^n$是神经元激活函数向量; $A=diag(a_{1}, \cdots, a_{n})$$a_{i}>0, i=1, 2, \cdots, n$. $B\in \mathbb{R}^{n\times n}$是互连权重矩阵, $C, D\in \mathbb{R}^{n\times n}$是延迟互连权重矩阵.在全文中, 我们有以下假设:

假设2.1   在 (2.1) 式中的时间延迟$\tau(t)$, $d(t)$是连续时变函数并满足

$ \left\{ {\begin{array}{*{20}{l}} {0 \le {\tau ^-} \le \tau (t) \le {\tau ^ + }, \dot \tau (t) \le \mu, }\\ {0 \le d(t) \le \;d_3^ +, } \end{array}} \right. $ (2.2)

对于任意整数$r\geq 1$, $k\geq 1$, $i\geq 1$, $i=1, 2, \cdots, 2^{r+1-k}$, $k=1, 2, \cdots, r$, 令$\delta=\frac{\tau^{+}-\tau^{-}}{r}$, $\rho_{k}(t)=\frac{\tau(t)-\tau^{-}}{r \times 2^{r+1-k}}$, 区间$[\tau^{-}, \tau^{+}]$可分解为$r$段.然后将每个子区间$[\tau^{-}+(k-1)\delta, \tau^{-}+k\delta]$分解为$2^{r+1-k}$段.对于每个子区间$[\tau^{-}+(k-1)\delta+\frac{i-1}{2^{r+1-k}}\delta, \tau^{-}+(k-1)\delta+\frac{i}{2^{r+1-k}}\delta]$=$[\tau^{-}+(k-1)\delta+\frac{i-1}{2^{r+1-k}}\delta, \tau^{-}+(k-1)\delta+\frac{i-1}{2^{r+1-k}}\delta+\rho_{k}(t)]\bigcup[\tau^{-}+(k-1)\delta+\frac{i-1}{2^{r+1-k}}\delta+\rho_{k}(t), \tau^{-}+(k-1)\delta+\frac{i}{2^{r+1-k}}\delta]$.另一方面, 对任意$t\geq 0$, 存在整数$i=1, 2, \cdots, 2^{r+1-k}$, $k=1, 2, \cdots, r$, 使$\tau(t)\in[\tau^{-}+(k-1)\delta+\frac{i-1}{2^{r+1-k}}\delta, \tau^{-}+(k-1)\delta+\frac{i}{2^{r+1-k}}\delta]$.

假设2.2  系统 (2.2) 中的任意激活函数$f_{i}(\cdot)$是连续有界的, 并满足以下不等式

$ \begin{eqnarray} \sigma_{i}^-\leq\frac{f_{i}(a)-f_{i}(b)}{a-b}\leq \sigma_{i}^+, k=1, 2, \cdots, n, \quad\mbox{且}\quad f_{i}(0)=0, \end{eqnarray} $ (2.3)

其中$a$, $b \in{\mathbb{R}}$, $a\neq b$, $\sigma_{i}^-$, $\sigma_{i}^+$是已知常量.

注2.2   $\sigma_{i}^-$, $\sigma_{i}^+(i=1, 2, \cdots, n)$是一些常量, 在假设2.2中可以是正的, 负的和零.因此, 这种类型的激活函数比通常的激活函数和分段线性函数$f_{i}(u)=\frac{1}{2}(|u_{i+1}|-|u_{i}|)$显然更加普遍, 这个分段线性函数有利于获得低保守性结果.

在得出主要结论之前, 我们将引用之后要使用的几个引理:

引理2.1[21]对于任意常矩阵$V$, $W\in{\mathbb{R}^{n\times n}}$$M>0$, 标量$b>a$, 矢量函数$V:[a, b]\rightarrow{\mathbb{R} ^m}$, 特别是以下集合有明确的定义,

$ \begin{eqnarray} (b-a)\int_{a}^{b}{V^T(s)MV(s)}{\rm d}s\geq \bigg(\int_{a}^{b}V(s){\rm d}s\bigg)^TM\int_{a}^{b}V(s){\rm d}s, \end{eqnarray} $ (2.4)
$ \begin{eqnarray} \frac{\tau^{2}}{2}\int_{-\tau}^{0}\int_{t+\theta}^{t}{W^T(s) MW(s){\rm d}s{\rm d}\theta}\geq \bigg(\int_{-\tau}^{0}\int_{t+\theta}^{t}W(s){\rm d}s{\rm d}\theta \bigg)^TM\int_{-\tau}^{0}\int_{t+\theta}^{t}W(s){\rm d}s{\rm d}\theta. \end{eqnarray} $ (2.5)

引理2.2[22]   令$f_{1}$, $f_{2}, \cdots, f_{n}: \mathbb{R}^{m}\rightarrow \mathbb{R} $$\mathbb{R}^{m}$公开的子集合D中有正值.那么, 在D之上$f_{{i}}$的互逆凸组合满足

$ \begin{eqnarray*} {\min_{\{\alpha_i|\alpha_i>0, {\sum\limits_i}\alpha_i=1\}}}\sum\limits_i\frac{1}{\alpha_i}f_i(t)=\sum\limits_if_i(t) +{\max_{g_{i, j}(t)}}\sum\limits_{i\neq j}g_{i, j}(t), \end{eqnarray*} $

服从

$ \begin{eqnarray*} \{g_{i, j}:\mathbb{R}^m\mapsto \mathbb{R}, g_{j, i}(t)\triangleq g_{i, j}(t), \left[ \begin{array}{cc} f_i(t) ~~&g_{i, j}(t)\\ g_{j, i}(t) ~~&f_j(t) \end{array} \right]\geq 0\}. \end{eqnarray*} $
3 主要结论

在此部分, 我们将通过LMI方法来得到主要结论, 为了方便陈述, 在下文中, 我们定义

$ \Sigma^+=diag[\sigma_{1}^{+}, \cdots, \sigma_{n}^{+}] \quad \mbox{和}\quad \Sigma^-=diag[\sigma_{1}^{-}, \cdots, \sigma_{n}^{-}], $
$ \begin{eqnarray*} \eta_{1}^T(t)& = &\Big[ x^T(t-\frac{1}{2}\delta) ~~ x^T(t-\frac{2}{2^1}\delta) ~~ x^T(t-\delta-\frac{1}{2^2}\delta) ~~ \cdots ~ ~ x^T(t-\delta-\frac{2^2}{2^2}\delta)~~ \cdots \\ && x^T(t-(r-1)\delta-\frac{1}{2^r}\delta) ~~ \cdots ~~ x^T(t-(r-1)\delta-\frac{2^{r}-1}{2^r}\delta) ~~ x^T(t-r\delta)\Big], \end{eqnarray*} $
$ \begin{eqnarray*} \eta_{2}^T(t)& =& \Big[ x^T(t-\frac{1}{2}\delta-\rho_{1}(t))~~ x^T(t-\delta-\rho_{1}(t)) ~~ x^T(t-\delta-\frac{1}{2^2}\delta-\rho_{2}(t))\\ && \cdots ~~ x^T(t-(r-1)\delta-\frac{1}{2^r}\delta-\rho_{r}(t)) ~ ~ x^T(t-(r-1)\delta-\frac{2}{2^r}\delta-\rho_{r}(t)) \\ && \cdots~~ x^T(t-(r-1)\delta-\frac{2^{r}-1}{2^r}\delta-\rho_{r}(t)) ~~ x^T(t-r\delta-\rho_{r}(t))\Big], \end{eqnarray*} $
$ \begin{eqnarray*} \eta_{3}^T(t)& =&\Big[ \frac{1}{\rho_{1}(t)}\int_{t-\tau^{-}-\frac{1}{2}\delta}^{t-\tau^{-} -\frac{1}{2}\delta+\rho_{1}(t)}x^T(s){\rm d}s~~ \frac{1}{\rho_{1}(t)}\int_{t-\tau^{-}-\delta}^{t-\tau^{-} -\delta+\rho_{1}(t)}x^T(s){\rm d}s\\ && \frac{1}{\rho_{2}(t)}\int_{t-\tau^{-}-\delta-\frac{1}{2^2} \delta}^{t-\tau^{-}-\delta-\frac{1}{2^2}\delta+\rho_{2}(t)}~~ x^T(s){\rm d}s ~~ \cdots ~~ \frac{1}{\rho_{2}(t)}\int_{t-\tau^{-}-\delta- \frac{2^2}{2^2}\delta}^{t-\tau^{-}-\delta-\frac{2^2}{2^2}\delta +\rho_{2}(t)}x^T(s){\rm d}s \\ && \cdots ~~ \frac{1}{\rho_{r}(t)}\int_{t-\tau^{-}-(r-1)\delta- \frac{1}{2^r}\delta}^{t-\tau^{-}-(r-1)\delta-\frac{1} {2^r}\delta+\rho_{r}(t)} ~~ x^T(s){\rm d}s~~ \cdots \\ &&\frac{1}{\rho_{r}(t)}\int_{t-\tau^{-}-(r-1)\delta- \frac{2^r-1}{2^r}\delta}^{t-\tau^{-}-(r-1)\delta-\frac{2^r-1}{2^r}\delta +\rho_{r}(t)}x^T(s){\rm d}s ~~ \frac{1}{\rho_{r}(t)}\int_{t-\tau^{-}-r\delta}^{t-\tau^{-}-r \delta+\rho_{r}(t)}x^T(s){\rm d}s\Big], \end{eqnarray*} $
$ \begin{eqnarray*} \eta_{4}^T(t) &=& \Big[ \frac{1}{\frac{1}{2}\delta-\rho_{1}(t)}\int_{t-\tau^{-}- \frac{1}{2}\delta+\rho_{1}(t)}^{t-\tau^{-}}x^T(s){\rm d}s ~~ \frac{1}{\frac{1}{2}\delta-\rho_{1}(t)}\int_{t-\tau^{-} -\delta+\rho_{1}(t)}^{t-\tau^{-}-\frac{1}{2}\delta}x^T(s){\rm d}s \\ && \frac{1}{\frac{1}{2^2}\delta-\rho_{2}(t)}\int_{t-\tau^{-}-\delta- \frac{1}{2^2}\delta+\rho_{2}(t)}^{t-\tau^{-}-\delta} x^T(s){\rm d}s ~ ~ \cdots ~~ \\ && \frac{1}{\frac{1}{2^2}\delta-\rho_{2}(t)}\int_{t-\tau^{-} -\delta-\frac{2^2}{2^2}\delta+\rho_{2}(t)}^{t-\tau^{-}-\delta- \frac{2^2-1}{2^2}}x^T(s){\rm d}s ~~ \cdots ~~ \\ && \frac{1}{\frac{1}{2^r}\delta-\rho_{r}(t)}\int_{t-\tau^{-}-(r-1) \delta-\frac{1}{2^r}\delta+\rho_{r}(t)}^{t-\tau^{-} -(r-1)\delta}x^T(s){\rm d}s ~~\cdots \\ && \frac{1}{\frac{1}{2^r}\delta-\rho_{r}(t)}\int_{t-\tau^{-}-(r-1) \delta-\frac{2^r-1}{2^r}\delta+\rho_{r}(t)}^{t-\tau^{-}-(r-1) \delta-\frac{2^r-2}{2^r}}x^T(s){\rm d}s \\ && \frac{1}{\frac{1}{2^r}\delta-\rho_{r}(t)}\int_{t-\tau^{-} -r\delta+\rho_{r}(t)}^{t-\tau^{-}-(r-1)\delta-\frac{2^r-1} {2^r}\delta}x^T(s){\rm d}s\Big], \end{eqnarray*} $
$ \begin{eqnarray*} \eta^T(t) &=&\Big[ x^T(t) ~~ x^T(t-\tau^{-}) ~~ \eta_{1}^T(t-\tau^{-}) ~~ \eta_{2}^T(t-\tau^{-}) ~ ~\eta_{3}(t) ~~ \eta_{4}^T(t) \\ && f^T(x(t))~~ f^T(x(t-\tau(t))) ~~ x^T(t-\tau(t)) ~~ \int_{t-d(t)}^{t}f^T(x(s)){\rm d}s \Big], \end{eqnarray*} $
$ e_{k}=\left[ O_{n\times(k-1)n} ~~I_n~~ O_{n\times(2^{r+3}-2-k)n} \right], $

我们所提的主要结论如下:

定理3.1  根据假设2.1, 2.2, 神经网络 (2.1) 是全局渐近稳定的, 当存在矩阵$V_{ij_{i}}>0$, $U_{ij_{i}}>0$, $W_{ij_{i}}>0$, $Q_{ij_{i}}>0$, $M_{ij_{i}}>0$, $F_{ij_{i}}>0$, $Q_{i}^{\ast}$, $R_{i}>0$, $\Lambda_{ij_{i}, p}$, $i=1, 2, \cdots, r$, $j_{i}=1, 2, \cdots, 2^i$, $p=1, 2, \cdots, 2^{r+3}-2$, $M>0$, 和正定对角矩阵$K_1, K_2, T, T_1, T_2$使下面的LMIs持有

$ \begin{eqnarray} \Phi_{ij_{i}}=\left[ \begin{array}{cc} Q_{ij_{i}} & Q^{\ast} \\ {} * & Q_{ij_{i}} \\ \end{array} \right]>0 \quad\mbox{, }\quad j_{i}=1, 2, \cdots, 2^i, i=1, 2, \cdots, r, \end{eqnarray} $ (3.1)
$ \begin{eqnarray} \Phi_{2}= \left[\begin{array}{ccccccccc} \Xi & \Lambda_{11} & \Lambda_{12} & \Lambda_{21} & \cdots & \Lambda_{22^{2}} & \cdots & \Lambda_{r1} & \Lambda_{r2^{r}}\\ {}* &-R_{1} & 0 & 0 & \cdots & 0 & \cdots & 0 & 0\\ {}* & * &-R_{1} & 0 & \cdots & 0 & \cdots & 0 & 0\\ {}* & * & * &-R_{2} & \cdots & 0 & \cdots & 0 & 0\\ %\hdotsfor{9}\\ \cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots\\ {}* & * & * & \cdots & * & 0 & 0 & -R_{r} & 0\\ {}* & * & * & \cdots & * & * & 0 & 0 & -R_{r}\\ \end{array}\right] <0, \end{eqnarray} $ (3.2)

其中

$ \begin{array}{*{20}{c}} {{K_1} = diag({k_{11}}, {k_{12}}, \cdots, {k_{1n}}), \quad {K_2} = diag({k_{21}}, {k_{22}}, \cdots, {k_{2n}}), }\\ {{T_1} = diag({t_{11}}, {t_{12}}, \cdots, {t_{1n}}), \quad {T_2} = diag({t_{21}}, {t_{22}}, \cdots, {t_{2n}}), }\\ {T = diag({t_1}, {t_2}, \cdots, {t_n}), \quad {\Lambda _{i{j_i}}} = col[{\Lambda _{i{j_i}, 1}}, {\Lambda _{i{j_i}, 2}}, \cdots, {\Lambda _{i{j_i}, {2^{r + 3}}-2}}], }\\ {{W_{11}} = {e_{{2^{r + 3}} -5}} -{\Sigma ^ -}{e_1}, \quad {W_{12}} = {\Sigma ^ + }{e_1} - {e_{{2^{r + 3}} - 5}}, }\\ {{W_{13}} = - A{e_1} + B{e_{{2^{r + 3}} - 5}} + C{e_{{2^{r + 3}} - 4}} + D{e_{{2^{r + 3}} - 2}}, }\\ {{W_1} = W_{11}^T{K_1}{W_{13}} + W_{12}^T{K_2}{W_{13}}, } \end{array} $
$ \begin{array}{*{20}{c}} {{W_2} = \sum\limits_{i = 1}^r {\sum\limits_{{j_i} = 1}^{{2^i}} \{ } \frac{\delta }{{{2^i}}}W_{13}^T{V_{i{j_i}}}{W_{13}}- \frac{2}{{{\delta ^i}}}{{({e_{{2^i} + {j_i}- 1}}- {e_{{2^i} + {j_i}}})}^T}{V_{i{j_i}}}({e_{{2^i} + {j_i} - 1}} - {e_{{2^i} + {j_i}}})\}, }\\ {{W_{31}} = col[{e_{{2^{r + 1}} + {2^i} + {j_i}-2}}-{e_{{2^{r + 2}} + {2^i} + {j_i}-4}}], }\\ {{W_{32}} = col[{e_{{2^i} + {j_i}-1}}-{e_{{2^{r + 2}} + {2^{r + 1}} + {2^i} + {j_i}-6}}], }\\ {{W_{33}} = col[{e_{{2^{r + 2}} + {2^{r + 1}} + {2^i} + {j_i}-6}}-{e_{{2^{r + 1}} + {2^i} + {j_i}-2}}], }\\ {{W_{34}} = col[{e_{{2^{r + 2}} + {2^i} + {j_i}-4}}-{e_{{2^i} + {j_i}}}], } \end{array} $
$ \begin{eqnarray*} W_{3}&=&\sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}} \bigg[\frac{\delta^{2}}{2}W_{13}^T (\frac{1}{2^i})^{2}(U_{ij_{i}}+W_{ij_{i}})W_{13}-2W_{31}^TU_{ij_i}W_{31}\\ &&-2W_{32}^T U_{ij_i}W_{32}-2W_{33}^TW_{ij_i}W_{33}-2W_{34}^T W_{ij_i}W_{34}\bigg], \end{eqnarray*} $
$ \begin{array}{*{20}{c}} {{W_4} = \sum\limits_{i = 1}^r {\sum\limits_{{j_i} = 1}^{{2^i}} {(e_{{2^i} + {j_i}- 1}^T{M_{i{j_i}}}{e_{{2^i} + {j_i}- 1}}- \frac{\mu }{{{2^i}r}}e_{{2^{r + 1}} + {2^i} + {j_i} - 2}^T{M_{i{j_i}}}{e_{{2^{r + 1}} + {2^i} + {j_i} - 2}})} }, }\\ {{W_5} = \sum\limits_{i = 1}^r {\sum\limits_{{j_i} = 1}^{{2^i}} {\frac{\delta }{{{2^i}}}} } (e_{{2^{r + 1}} + {2^i} + {j_i} - 2}^T{F_{i{j_i}}}{e_{{2^{r + 1}} + {2^i} + {j_i} - 2}} + e_{{2^i} + {j_i} - 1}^T{Q_{i{j_i}}}{e_{{2^i} + {j_i} - 1}}), }\\ {W_1^ * = col[{e_{{2^{r + 1}} + {2^i} + {j_i}-2}}-{e_{{2^i} + {j_i}}}], \quad W_2^ * = col[{e_{{2^i} + {j_i}-1}}-{e_{{2^{r + 1}} + {2^i} + {j_i}-2}}], }\\ {{W^ * } = W{{_1^ * }^T}{Q_{i{j_i}}}W_1^ * + W{{_1^ * }^T}Q_i^ * W_2^ * + W{{_2^ * }^T}Q{{_i^ * }^T}W_2^ * + W{{_2^ * }^T}{Q_{i{j_i}}}W_2^ *, } \end{array} $
$ \begin{array}{*{20}{c}} {{W_6} = e_1^T{\Sigma ^ + }{e_1}-e_{{2^{r + 3}}-5}^TT{e_1}-(1 - \mu )e_{{2^{r + 3}} - 3}^T{\Sigma ^ + }T{e_{{2^{r + 3}} - 3}} + (1 - \mu )e_{{2^{r + 3}} - 4}^TT{e_{{2^{r + 3}} - 3}}, }\\ {{W_7} = {{({d^ + })}^2}e_{{2^{r + 3}} - 5}^TM{e_{{2^{r + 3}} - 5}} - e_{{2^{r + 3}} - 2}^TM{e_{{2^{r + 3}} - 2}}, } \end{array} $
$ \begin{array}{l} {W_8} =-2e_{{2^{r + 3}}-5}^T{T_1}{e_{{2^{r + 3}}-5}} + e_1^T{T_1}({\Sigma ^ + } + {\Sigma ^ - }){e_{{2^{r + 3}} - 5}} + e_{{2^{r + 3}} - 5}^T({\Sigma ^ + } + {\Sigma ^ - }){T_1}{e_1}\\ \;\;\;\;\;\;\; - 2e_1^T{\Sigma ^ + }{T_1}{\Sigma ^ - }{e_1}, \end{array} $
$ \begin{eqnarray*} W_9&=&-2e_{2^{r+3}-4}^TT_{1}e_{2^{r+3}-4}+e_{2^{r+3}-3}^TT_{1} (\Sigma^{+}+\Sigma^{-})e_{2^{r+3}-4} \\ &&+e_{2^{r+3}-4}^T(\Sigma^{+}+\Sigma^{-})T_{1}e_{2^{r+3}-3} -2e_{2^{r+3}-3}^T\Sigma^{+}T_{1}\Sigma^{-}e_{2^{r+3}-3}, \end{eqnarray*} $
$ W_{10}=(e_{2^i+j_{i}-1}-e_{2^i+j_{i}})^TR_{i}(e_{2^i+j_{i}-1}-e_{2^i+j_{i}}), $
$ \begin{eqnarray*} \Xi&=&W_{1}+W_{1}^T+\sum\limits_{i=2}^{5}W_{i}+\sum\limits_{i=7}^{10}W_{i}+W_{6}+ W_{6}^T-W^{\ast}\\ &&+\sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}} (\Lambda_{ij_{i}}e_{2^i+j_{i}-1} +e_{2^i+j_{i}-1}^T\Lambda_{ij_{i}}^T) - \sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}}(\Lambda_{ij_{i}}e_{2^i+j_{i}}+e_{2^i+j_{i}}^T\Lambda_{ij_{i}}^T), \end{eqnarray*} $

  针对以下候选Lyapunov-Krasovskii函数

$ V(x_{t})=\sum\limits_{i=1}^{7}V_{i}(x_{t}), $

其中

$ V_{1}(x_{t})=2\sum\limits_{j=1}^{n}k_{1j}\int_{0}^{x_{j}(t)}(f_{j}(s)-\sigma_{j}^{-}s){\rm d}s+2\sum\limits_{j=1}^{n}k_{2j}\int_{0}^{x_{j}(t)}(\sigma_{j}^{+}s-f_{j}(s)){\rm d}s, $
$ \begin{eqnarray*} V_{2}(x_{t})&=&\sum\limits_{j_{1}=1}^{2}\int_{-\tau^{-}-\frac{j_{1}}{2}\delta}^{-\tau^{-}-\frac{j_{1}-1}{2}\delta}\int_{t+\theta}^{t}\dot{x}^T(s)V_{1j_{1}}\dot{x}(s){\rm d}s{\rm d}\theta \\ && +\sum\limits_{j_{2}=1}^{2^2}\int_{-\tau^{-}-\frac{j_{2}}{2^2}\delta-\delta}^{-\tau^{-}-\frac{j_{2}-1}{2^2}\delta-\delta}\int_{t+\theta}^{t}\dot{x}^T(s)V_{2j_{2}} \dot{x}(s){\rm d}s{\rm d}\theta+\cdots \\ &&+\sum\limits_{j_{r}=1}^{2^r}\int_{-\tau^{-}-\frac{j_{r}}{2^r}\delta-(r-1)\delta}^{-\tau^{-}-\frac{j_{r}-1}{2^r}\delta-(r-1)\delta}\int_{t+\theta}^{t}\dot{x}^T(s)V_{rj_{r}}\dot{x}(s){\rm d}s{\rm d}\theta, \end{eqnarray*} $
$ \begin{eqnarray*} V_{3}(x_{t})&=&\sum\limits_{j_{1}=1}^{2}\int_{-\tau^{-}-\frac{j_{1}}{2}\delta}^{-\tau^{-}-\frac{j_{1}-1}{2}\delta}\int_{\eta}^{-\tau^{-}-\frac{j_{1}-1}{2}\delta}\int_{t+\theta}^{t}\dot{x}^T(s)U_{1j_{1}}\dot{x}(s){\rm d}s{\rm d}\theta {\rm d}\eta \\&& +\sum\limits_{j_{1}=1}^{2}\int_{-\tau^{-}-\frac{j_{1}}{2}\delta}^{-\tau^{-}-\frac{j_{1}-1}{2}\delta}\int_{-\tau^{-}-\frac{j_{1}}{2}\delta}^{\eta}\int_{t+\theta}^{t}\dot{x}^T(s)W_{1j_{1}}\dot{x}(s){\rm d}s{\rm d}\theta {\rm d}\eta \\&& +\sum\limits_{j_{2}=1}^{2^2}\int_{-\tau^{-}-\frac{j_{2}}{2^2}\delta-\delta}^{-\tau^{-}-\frac{j_{2}-1}{2^2}\delta-\delta}\int_{\eta}^{-\tau^{-}-\frac{j_{2}-1}{2^2}\delta-\delta}\int_{t+\theta}^{t}\dot{x}^T(s)U_{2j_{1}}\dot{x}(s){\rm d}s{\rm d}\theta {\rm d}\eta\\&& +\sum\limits_{j_{2}=1}^{2^2}\int_{-\tau^{-}-\frac{j_{2}}{2^2}\delta-\delta}^{-\tau^{-}-\frac{j_{2}-1}{2^2}\delta-\delta}\int_{-\tau^{-}-\frac{j_{2}}{2^2}\delta-\delta}^{\eta}\int_{t+\theta}^{t}\dot{x}^T(s)W_{2j_{2}}\dot{x}(s){\rm d}s{\rm d}\theta {\rm d}\eta+\cdots \\&&+\sum\limits_{j_{r}=1}^{2^r}\int_{-\tau^{-}-\frac{j_{r}}{2^r}\delta-(r-1)\delta}^{-\tau^{-}-\frac{j_{r}-1}{2^r}\delta-(r-1)\delta} \int_{\eta}^{-\tau^{-}-\frac{j_{r}-1}{2^r}\delta-(r-1)\delta}\int_{t+\theta}^{t}\dot{x}^T(s)U_{rj_{r}}\dot{x}(s){\rm d}s{\rm d}\theta {\rm d}\eta\\&& +\sum\limits_{j_{r}=1}^{2^r}\int_{-\tau^{-}-\frac{j_{r}}{2^r}\delta-(r-1)\delta}^{-\tau^{-}-\frac{j_{r}-1}{2^r}\delta-(r-1)\delta}\int_{-\tau^{-}-\frac{j_{r}}{2^r}\delta-(r-1)\delta}^{\eta}\int_{t+\theta}^{t}\dot{x}^T(s)W_{rj_{r}}\dot{x}(s){\rm d}s{\rm d}\theta {\rm d}\eta, \end{eqnarray*} $
$ \begin{eqnarray*} V_{4}(x_{t})&=&\sum\limits_{j_{1}=1}^{2}\int_{t-\tau^{-}-\frac{j_{1}}{2}\delta+\rho_{1}(t)}^{t-\tau^{-}-\frac{j_{1}-1}{2}\delta}x^T(s)M_{1j_{1}}x(s){\rm d}s \\&& +\sum\limits_{j_{2}=1}^{2^2}\int_{t-\tau^{-}-\frac{j_{2}}{2^2}\delta-\delta+\rho_{2}(t)}^{t-\tau^{-}-\frac{j_{2}-1}{2^2}\delta-\delta}x^T(s)M_{2j_{2}}x(s){\rm d}s +\cdots \\ && +\sum\limits_{j_{r}=1}^{2^r}\int_{t-\tau^{-}-\frac{j_{r}}{2^r}\delta-(r-1)\delta+\rho_{r}(t)}^{t-\tau^{-}-\frac{j_{r}-1}{2^r}\delta-(r-1)\delta}x^T(s)M_{rj_{r}}x(s){\rm d}s, \end{eqnarray*} $
$ \begin{eqnarray*} V_{5}(x_{t})&=&\sum\limits_{j_{1}=1}^{2}\int_{-\tau^{-}-\frac{j_1}{2} \delta}^{-\tau^{-}-\frac{j_1}{2}\delta+\rho_{1}(t)}\int_{t+\theta }^{t-\tau^{-}-\frac{j_1}{2}\delta +\rho_{1}(t)}\dot{x}^T(s)F_{1j_{1}}\dot{x}(s){\rm d}s{\rm d}\theta \\ && +\sum\limits_{j_{1}=1}^{2}\int_{-\tau^{-}-\frac{j_1}{2}\delta+ \rho_{1}(t)}^{-\tau^{-}-\frac{j_1-1}{2}\delta} \int_{t+\theta}^{t-\tau^{-} -\frac{j_1-1}{2}\delta}\dot{x}^T(s)Q_{1j_{1}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &&+\sum\limits_{j_{2}=1}^{2^2}\int_{-\tau^{-}-\frac{j_2}{2^2}\delta-\delta}^{-\tau^{-}-\frac{j_2}{2^2}\delta-\delta+\rho_{2}(t)}\int_{t+\theta}^{t-\tau^{-}-\frac{j_2}{2^2}\delta-\delta+\rho_{2}(t)} \dot{x}^T(s)F_{2j_{2}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &&+\sum\limits_{j_{2}=1}^{2^2}\int_{-\tau^{-}-\frac{j_2}{2^2}\delta-\delta+\rho_{2}(t)}^{-\tau^{-}-\frac{j_2-1}{2^2}\delta-\delta}\int_{t+\theta}^{t-\tau^{-}-\frac{j_2-1}{2^2}\delta-\delta}\dot{x}^T(s)Q_{2j_{2}}\dot{x}(s){\rm d}s{\rm d}\theta +\cdots \\ && +\sum\limits_{j_{r}=1}^{2^r}\int_{-\tau^{-}-\frac{j_r}{2^r}\delta-(r-1)\delta}^{-\tau^{-}-\frac{j_r}{2^r}\delta-(r-1)\delta+\rho_{r}(t)}\int_{t+\theta}^{t-\tau^{-}-\frac{j_r}{2^r}\delta-(r-1)\delta+\rho_{r}(t)}\dot{x}^T(s)F_{rj_{r}}\dot{x}(s){\rm d}s{\rm d}\theta\\ && +\sum\limits_{j_{r}=1}^{2^r}\int_{-\tau^{-}-\frac{j_r}{2^r}\delta-(r-1)\delta+\rho_{r}(t)}^{-\tau^{-}-\frac{j_r-1}{2^r}\delta-(r-1)\delta}\int_{t+\theta}^{t-\tau^{-}-\frac{j_r-1}{2^r}\delta-(r-1)\delta}\dot{x}^T(s)Q_{rj_{r}}\dot{x}(s){\rm d}s{\rm d}\theta, \end{eqnarray*} $
$ V_{6}(x_{t})=2\sum\limits_{i=1}^{n}\int_{t-\tau(t)}^{t}t_{i}(\sigma_{i}^{+}x_{i}(s)-f_{i}(x_{i}(s))x_{i}(s){\rm d}s, $
$ V_{7}(x_{t})=d^{+}\int_{-d^{+}}^{0}\int_{t+\beta}^{t}f^T(x(s))Mf(x(s)){\rm d}s{\rm d}\beta. $

现在, 沿着 (2.1) 式的解决方法对$V(x_{t})$进行时间求导, 可以得到

$ \dot{V}(x_{t})=\sum\limits_{i=1}^{6}\dot{V}_{i}(x_{t}), $
$ \begin{eqnarray} \dot{V}_{1}(x_{t})&=&2[f(x(t))-\Sigma^{-}x(t)]^TK_1\dot{x}(t)+2[\Sigma^{+}x(t)-f(x(t))]^TK_2\dot{x}(t)\\ & =&\eta^T(t)(W_{11}^TK_{1}W_{13}+W_{12}^TK_{2}W_{13}+W_{13}^TK_{1}W_{11}+W_{13}^TK_{2}W_{12})\eta(t)\\ & =&\eta^{T}(t)(W_{1}+W_{1}^{T})\eta(t), \end{eqnarray} $ (3.3)
$ \begin{eqnarray} \dot{V}_{2}(x_{t})&=&\dot{x}^T(t) \bigg\{\frac{\delta}{2}\sum\limits_{j_{1}=1}^{2} V_{1j_{1}}+\frac{\delta}{2^2}\sum\limits_{j_{2}=1}^{2^2}V_{2j_{2}}+\cdots +\frac{\delta}{2^r}\sum\limits_{j_{r}=1}^{2^r}V_{rj_{r}}\bigg\}\dot{x}(t) \\ &&-\frac{2}{\delta}\sum\limits_{j_{1}=1}^{2}(x(t-\tau^{-} -\frac{j_{1}-1}{2}\delta)-x(t-\tau^{-}-\frac{j_1}{2}\delta))^T V_{1j_{1}}(x(t-\tau^{-}-\frac{j_{1}-1}{2}\delta) \\ &&-x(t-\tau^{-}-\frac{j_1}{2}\delta)) -\frac{2}{\delta^{2}}\sum\limits_{j_{2}=1}^{2^2} (x(t-\tau^{-}-\frac{j_{2}-1}{2^2}\delta-\delta) \\ &&-x(t-\tau^{-} -\frac{j_2}{2^2}\delta-\delta))^TV_{2j_{2}}(x(t-\tau^{-} -\frac{j_{2}-1}{2^2}\delta-\delta) \\ &&-x(t-\tau^{-}-\frac{j_2}{2^2}\delta-\delta)) -\cdots -\frac{2}{\delta^{r}}\sum\limits_{j_{r}=1}^{2^r}(x(t-\tau^{- }-\frac{j_{r}-1}{2^r}\delta -(r-1)\delta) \\ &&-x(t-\tau^{-}-\frac{j_r}{2^r}\delta-(r-1)\delta))^TV_{rj_{r}} (x(t-\tau^{-}-\frac{j_{r}-1}{2^r}\delta -(r-1)\delta) \\ &&-x(t-\tau^{-}-\frac{j_r}{2^r}\delta-(r-1)\delta)) \\ & =&\dot{x}^T(t){\sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}}\frac{\delta}{2^{i}} V_{ij_{i}}}\dot{x}(t)- \eta^T(t)\{\sum\limits_{i=1}^{r}\sum\limits_{j_{1}=1}^{2^i}\frac{2}{\delta^{i}} (e_{2^i+j_{i}-1}-e_{2^i+j_{i}})^{T}, \end{eqnarray} $ (3.4)
$ \begin{eqnarray*} &&V_{ij_{i}}(e_{2^i+j_{i}-1}-e_{2^i+j_{i}})\}\eta(t)\\ &=&\eta^T(t)\bigg\{\sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}} \bigg[\frac{\delta}{2^{i}}W_{13}^{T}V_{ij_{i}}W_{13}-\frac{2}{\delta^{i}} (e_{2^i+j_{i}-1}-e_{2^i+j_{i}})^{T} V_{ij_{i}}(e_{2^i+j_{i}-1}-e_{2^i+j_{i}})\bigg]\bigg\}\eta(t) \\ &=&\eta^T(t)W_{2}\eta(t), \end{eqnarray*} $
$ \begin{eqnarray} \dot{V}_{3}(x_{t})&=&\frac{\delta^{2}}{2}\dot{x}^T(t) \bigg[\sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}}(\frac{1}{2^i})^{2}(U_{ij_{i}} +W_{ij_{i}})\bigg]\dot{x}(t)\\ && -\sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}} \bigg[\int_{-\tau^{-}-\frac{j_{i}}{2^i}\delta-(i-1)\delta}^{-\tau^{-}-\frac{j_{i}-1}{2^i} \delta-(i-1)\delta}\int_{t+\theta}^{t-\tau^{-}-\frac{j_{i}-1}{2^i} \delta-(i-1)\delta}\dot{x}^T(s)U_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &&+\int_{-\tau^{-}-\frac{j_{i}}{2^i}\delta-(i-1)\delta}^{-\tau^{-} -\frac{j_{i}-1}{2^i}\delta-(i-1)\delta}\int_{t-\tau^{-} -\frac{j_{i}}{2^i}\delta-(i-1)\delta}^{t+\theta}\dot{x}^T(s)W_{ij_{i}} \dot{x}(s){\rm d}s{\rm d}\theta\bigg], \end{eqnarray} $ (3.5)

我们令

$ \alpha_{i}=\rho_{i}(t) , \quad \beta_{i}=\frac{\delta}{2^{i}}-\rho_{i}(t), \quad i=1, 2, \cdots, r, $
$ \begin{eqnarray*} &&-\int_{-\tau^{-}-\frac{j_{i}}{2^i}\delta-(i-1)\delta}^{-\tau^{-} -\frac{j_{i}-1}{2^i}\delta-(i-1)\delta}\int_{t+\theta}^{t-\tau^{-} -\frac{j_{i}-1}{2^i}\delta-(i-1)\delta}\dot{x}^T(s)U_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &&-\int_{-\tau^{-}-\frac{j_{i}}{2^i}\delta-(i-1)\delta}^{-\tau^{-} -\frac{j_{i}-1}{2^i}\delta-(i-1)\delta}\int_{t-\tau^{-}-\frac{j_{i}}{2^i} \delta-(i-1)\delta}^{t+\theta}\dot{x}^T(s)W_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta\\ &\leq&- \int_{-\tau^{-}-\frac{j_i}{2^i}-(i-1)\delta}^{-\tau^{-}-\frac{j_i}{2^i} \delta-(i-1) \delta+\rho_{i}(t)} \int_{t+\theta}^{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)} \dot{x}^T(s)U_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &&- \int_{-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{-\tau^{-} -\frac{j_{i}-1}{2^i}\delta-(i-1)\delta} \int_{t+\theta}^{t-\tau^{-}-\frac{j_{i}-1}{2^i}\delta-(i-1)\delta}\dot{x}^T (s)U_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &&-\frac{\alpha_{i}}{\beta_{i}}\int_{t-\tau^{-}-\frac{j_i}{2^i} \delta-(i-1)\delta+\rho_{i}(t)}^{t-\tau^{-}-\frac{j_i-1}{2^i} \delta-(i-1)\delta}\dot{x}^T(s){\rm d}sU_{ij_i} \int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^ {t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta}\dot{x}(s){\rm d}s \\ && -\int_{-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{-\tau^{-} -\frac{j_i-1}{2^i}\delta-(i-1)\delta}\int_{t-\tau^{-}-\frac{j_i}{2^i} \delta-(i-1)\delta+\rho_{i}(t)}^{t+\theta} \dot{x}^T(s)W_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &&-\int_{-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta}^{-\tau^{- }-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\int_{t-\tau^{-} -\frac{j_i}{2^i}\delta-(i-1)\delta}^{t+\theta}\dot{x}^T(s)W_{ij_ {i}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &&-\frac{\beta_i}{\alpha_i}\int_{t-\tau^{-}-\frac{j_i}{2^i}\delta- (i-1)\delta}^{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta +\rho_{i}(t)}\dot{x}^T(s){\rm d}sW_{ij_i} \int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta}^{t-\tau^{-} -\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\dot{x}(s){\rm d}s, \\ \\ && -\int_{-\tau^{-}-\frac{j_i}{2^i}-(i-1)\delta}^{-\tau^{-} -\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\int_{t+\theta}^ {t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\dot{x} ^T(s)U_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &&-\int_{-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{-\tau^{-} -\frac{j_{i}-1}{2^i}\delta-(i-1)\delta}\int_{t+\theta}^{t-\tau^{-} -\frac{j_{i}-1}{2^i}\delta-(i-1)\delta}\dot{x}^T(s)U_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &&-\int_{-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{-\tau^{-} -\frac{j_i-1}{2^i}\delta-(i-1)\delta}\int_{t-\tau^{-}-\frac{j_i} {2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{t+\theta}\dot{x}^T(s) W_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &&-\int_{-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta}^{-\tau^{-} -\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\int_{t-\tau^{-} -\frac{j_i}{2^i}\delta-(i-1)\delta}^{t+\theta}\dot{x}^T(s) W_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta \\ &\leq&-2\eta^{T}(t)\{(e_{2^{r+1}+2^i+j_i-2}-e_{2^{r+2}+2^i+j_i-4} )^TU_{ij_{i}}(e_{2^{r+1}+2^i+j_i-2}-e_{2^{r+2}+2^i+j_i-4})\\ &&+(e_{2^i+j_i-1}-e_{2^{r+2}+2^{r+1}+2^i+j_i-6})^TU_{ij_{i}} (e_{2^i+j_i-1}-e_{2^{r+2}+2^{r+1}+2^i+j_i-6}) \\ &&+(e_{2^{r+2}+2^{r+1}+2^i+j_i-6}-e_{2^{r+1}+2^i+j_i-2})^TW_{ij_i} (e_{2^{r+2}+2^{r+1}+2^i+j_i-6}-e_{2^{r+1}+2^i+j_i-2})\\ && +(e_{2^{r+2}+2^i+j_i-4}-e_{2^i+j_i})^TW_{ij_i}(e_{2^{r+2}+2^i+j_i-4} -e_{2^i+j_i})\}\eta(t), \end{eqnarray*} $

因此我们可以得到

$ \begin{eqnarray} \dot{V}_{3}(x_{t})&\leq&\eta^T(t)W_3\eta(t)-\sum\limits_{i=1}^{r} \sum\limits_{j_{i}=1}^{2^{i}} \bigg\{-\frac{\alpha_{i}}{\beta_{i}} \int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta}\dot{x}^T(s){\rm d}sU_{ij_i}\\ && \int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta} \dot{x}(s){\rm d}s-\frac{\beta_i}{\alpha_i}\int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta}^{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\dot{x}^T(s){\rm d}sW_{ij_i}\\ && \int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta}^{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\dot{x}(s){\rm d}s\bigg\}, \end{eqnarray} $ (3.6)
$ \begin{eqnarray} \dot{V}_{4}(x_{t})&=&\sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}} \bigg\{x^T(t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta)M_{ij_i} x(t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta)\\ &&-\dot{\rho_{i}}(t)x^T(t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t))M_{ij_1}x(t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)) \bigg\} \\ & \leq&\eta^T(t)\bigg\{\sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}}(e_{2^i+j_i-1}^TM_{ij_i}e_{2^i+j_i-1}-\frac{\mu}{2^{i}r}e_{2^{r+1}+2^i+j_i-2}^TM_{ij_i}e_{2^{r+1}+2^i+j_i-2}) \bigg\}\eta(t) \\ & =&\eta^T(t)W_4\eta(t), \end{eqnarray} $ (3.7)
$ \begin{eqnarray} \dot{V}_{5}(x_{t})&\leq& \eta^T(t)W_5\eta(t)-\frac{1}{\alpha_{i}} \int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta}^{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\dot{x}^T(s){\rm d}sF_{ij_i}\int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta}^{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)} \\ &&\dot{x}(s){\rm d}s -\frac{1}{\beta_i}\int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta}\dot{x}^T(s){\rm d}sQ_{ij_i}\int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta}\dot{x}(s){\rm d}s. \\ &&\end{eqnarray} $ (3.8)

根据 (3.6), (3.8) 式和引理2.2, 如果$\left[\begin{array}{cc} Q_{ij_i} ~& Q_{i}^{\ast} \\ \ast~ & Q_{ij_i} \end{array} \right]>0 $, 有

$ \begin{eqnarray} &&-\frac{1}{\alpha_{i}} \int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta}^{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\dot{x}^T(s){\rm d}sF_{ij_i}\int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta}^{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\dot{x}(s){\rm d}s \\ && -\frac{1}{\beta_i} \int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta}\dot{x}^T(s){\rm d}sQ_{ij_i}\int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta}\dot{x}(s){\rm d}s \\ && -\frac{\beta_i}{\alpha_i} \int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta}^{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\dot{x}^T(s){\rm d}sW_{ij_i} \int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta}^{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}\dot{x}(s){\rm d}s \\ && -\frac{\alpha_{i}}{\beta_{i}}\int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta}\dot{x}^T(s){\rm d}sU_{ij_i}\int_{t-\tau^{-}-\frac{j_i}{2^i}\delta-(i-1)\delta+\rho_{i}(t)}^{t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta}\dot{x}(s){\rm d}s \\ & \leq&-\eta^T(t)\left[ \begin{array}{c} e_{2^{r+1}+2^i+j_i-2}-e_{2^i+j_i} \\ e_{2^i+j_i-1}-e_{2^{r+1}+2^i+j_i-2} \\ \end{array} \right]^T\left[ \begin{array}{cc} Q_{ij_i} & Q_{i}^{\ast} \\ \ast & Q_{ij_i} \\ \end{array} \right]\left[ \begin{array}{c} e_{2^{r+1}+2^i+j_i-2}-e_{2^i+j_i} \\ e_{2^i+j_i-1}-e_{2^{r+1}+2^i+j_i-2} \\ \end{array} \right]\eta(t), \\ && \end{eqnarray} $ (3.9)

从 (3.5), (3.6), (3.8) 和 (3.9) 式, 我们可以得到

$ \begin{eqnarray} \dot{V}_{3}(x_{t})+\dot{V}_{5}(x_{t})\leq\eta^T(t)(W_3+W_5-W^{\ast})\eta(t), \end{eqnarray} $ (3.10)
$ \begin{eqnarray} \dot{V}_{6}(x_{t})&=&2x^T(t)\Sigma^{+}x(t)-2f^T(x(t))Tx(t)-2(1-\mu) x^T(t-\tau(t))\Sigma^{+}Tx(t-\tau(t)) \\ &&+2(1-\mu)f^{T}(x(t-\tau(t)))Tx(t-\tau(t)) \\ &=&\eta^T(t)W_6\eta(t)+\eta^T(t)W_{6}^{T}(t)\eta(t), \end{eqnarray} $ (3.11)
$ \begin{eqnarray} \dot{V}_{7}(x_{t})&\leq&{(d^{+})}^2f(x(t))Mf(x(t))-\int_{t-d(t)}^{t}f^{T}(x(s)){\rm d}sM\int_{t-d(t)}^{t}f(x(s)){\rm d}s \\ & =&\eta^{T}(t)W_{7}\eta(t), \end{eqnarray} $ (3.12)

根据假设2.2, $[f_{i}(x_{i}(t))-\sigma_{i}^{+}x_{i}(t)][\sigma_{i}^{-}x_{i}(t)-f_{i}(x_{i}(t))]\geq0$, $i=1, 2, \cdots, n$, 我们很容易得到:对任意对角矩阵$T_{1}=diag(t_{11}, \cdots, t_{1n})\geq0$, $T_{2}=diag(t_{21}, \cdots, t_{2n})\geq0$, 有

$ \begin{eqnarray} &&-2f^{T}(x(t))T_1f(x(t))+2x^{T}(t)T_{1}(\Sigma^{+}+\Sigma^{-})f(x(t))-2x^T(t)\Sigma^{+}T_{1}\Sigma^{-}x(t) \\ & =&\eta^T(t)[-2e_{2^{r+3}-5}^TT_{1}e_{2^{r+3}-5}+e_{1}^TT_{1}(\Sigma^{+}+\Sigma^{-})e_{2^{r+3}-5}+e_{2^{r+3}-5}^T(\Sigma^{+}+\Sigma^{-})T_{1}e_{1} \\ && -2e_{1}^T\Sigma^{+}T_{1}\Sigma^{-}e_{1}]\eta(t) \\ & =&\eta^T(t)W_8\eta(t) \geq 0, \end{eqnarray} $ (3.13)
$ \begin{eqnarray} &&-2f^{T}(x(t-\tau(t)))T_2f(x(t-\tau(t)))+2x^{T}(t-\tau(t))T_{1}(\Sigma^{+}+\Sigma^{-})f(x(t-\tau(t))) \\ &&-2x^T(t-\tau(t))\Sigma^{+}T_{1}\Sigma^{-}x(t-\tau(t)) \\ & =&\eta^T(t)[-2e_{2^{r+3}-4}^TT_{1}e_{2^{r+3}-4}+e_{2^{r+3}-3}^TT_{1}(\Sigma^{+}+\Sigma^{-})e_{2^{r+3}-4} \\ &&+e_{2^{r+3}-4}^T(\Sigma^{+}+\Sigma^{-})T_{1}e_{2^{r+3}-3} -2e_{2^{r+3}-3}^T\Sigma^{+}T_{1}\Sigma^{-}e_{2^{r+3}-3}]\eta(t) \\ & =&\eta^T(t)W_9\eta(t) \geq0, \end{eqnarray} $ (3.14)

通过使用牛顿莱布尼兹公式和任意矩阵$\Lambda_{ij_{i}}$, $j_{i}=1, 2, \cdots, 2^i$, $i=1, 2, \cdots r$, 有

$ \begin{eqnarray} \Theta_{ij_{i}}&=&2\eta^T(t)\Lambda_{ij_{i}} \bigg[x(t-\tau^{-}-\frac{j_{i}-1}{2^i}-(i-1)\delta)-x(t-\tau^{-}-\frac{j_i}{2^i}-(i-1)\delta) \\ &&- \int_{t-\tau^{-}-\frac{j_i}{2^i}-(i-1)\delta}^{t-\tau^{-} -\frac{j_{i}-1}{2^i}-(i-1)\delta}\dot{x}(s){\rm d}s\bigg]=0, \end{eqnarray} $ (3.15)

我们可以得到

$ \begin{eqnarray*} &&2\eta^T(t)\Lambda_{ij_{i}}\int_{t-\tau^{-}-\frac{j_i}{2^i}-(i-1)\delta}^{ t-\tau^{-}-\frac{j_{i}-1}{2^i}-(i-1)\delta}\dot{x}(s){\rm d}s \\ &\leq&\eta^T(t)\Lambda_{ij_{i}}R_{i}^{-1}\Lambda_{ij_{i}}^T\eta(t)+ \int_{t-\tau^{-}-\frac{j_i}{2^i}-(i-1)\delta}^{t-\tau^{-}-\frac{j _{i}-1}{2^i}-(i-1)\delta}\dot{x}^T(s){\rm d}s R_{i}\int_{t-\tau^{-}-\frac{j_i}{2^i}-(i-1)\delta}^{t-\tau^{-} -\frac{j_{i}-1}{2^i}-(i-1)\delta}\dot{x}(s){\rm d}s\\ & =&\eta^T(t)[\Lambda_{ij_{i}}R_{i}^{-1}\Lambda_{ij_{i}}^T+(e_{2^i +j_{i}-1}-e_{2^i+j_{i}})^TR_{i}(e_{2^i+j_{i}-1}-e_{2^i+j_{i}})]\eta(t)\\ & =&\eta^T(t)\Lambda_{ij_{i}}R_{i}^{-1}\Lambda_{ij_{i}}^T\eta(t) +\eta^T(t)W_{10}\eta(t), \end{eqnarray*} $

由 (3.3) 到 (3.15) 式可以得到

$ \begin{eqnarray} \dot{V}(x_{t})&\leq&(\eta^T(t)W_{1}+W_{1}^T+\sum\limits_{i=2}^{5}W_{i} +\sum\limits_{i=7}^{10}W_{i}+W_{6}+W_{6}^T-W^{\ast} \\ &&+\sum\limits_{i=1}^{r} \sum\limits_{j_{i}=1}^{2^{i}}(\Lambda_{ij_{i}}e_{2^i+j_{i}-1} +e_{2^i+j_{i}-1}^T\Lambda_{ij_{i}}^T) \\ &&- \sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}}(\Lambda_{ij_{i}}e_{2^i+j_{i}} +e_{2^i+j_{i}}^T\Lambda_{ij_{i}}^T))\eta(t)+\eta^T(t) \Lambda_{ij_{i}}^TR_{i}^{-1}\Lambda_{ij_{i}}\eta(t) \\ & =&\eta^T(t)\Xi\eta(t)+\eta^T(t)\Lambda_{ij_{i}}^TR_{i}^{-1}\Lambda_{ij_{i}}\eta(t), \end{eqnarray} $ (3.16)

应用萧氏转换等价于 (3.2) 式, 可得

$ \begin{eqnarray} \dot{V}(x_{t})\leq\eta^T(t)\Xi\eta(t)+\eta^T(t)\Lambda_{ij_{i}}^TR_{i}^{-1}\Lambda_{ij_{i}}\eta(t)<0, \end{eqnarray} $ (3.17)

至此证得神经网络 (2.1) 是全局渐近稳定的.

注3.1  本文使用新不等时滞分割法对神经网络全局渐近稳定性问题进行了分析, 时间延迟区间$[\tau^{-}, \tau^{+}]$可被分为$r$段, 我们将每个子区间$[\tau^{-}+(k-1)\delta, \tau^{-}+k\delta]$分为$2^{r+1-k}$段.分区方法不同于以前的方法, 在本文中首次被提出.

注3.2  在文献[25]中, 时滞区间$[\tau_{2}^{-}, \tau_{2}^{+}]$的子区间$[0, \tau_{2}^{-}]$被分解为n个相等的段, 没有移除子区间时变延迟$\tau_{2}(t)$, 为了得到准确的结果, 本文分割时滞区间$[\tau_{2}^{-}, \tau_{2}^{+}]$并引入时间变量$\rho_{k}(t)$ ($\rho_{k}(t)=\frac{\tau(t)-\tau^{-}}{r \times 2^{r+1-k}}$).由于引入了时间变量$\rho_{k}(t)$, 我们可以构建Lyapunov-Krasovskii $V_{4}$$V_{5}$, 如此类形式

$ \sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^i}\int_{-\tau^{-}-\frac{j_i}{2^i} \delta-(i-1)\delta+\rho_{i}(t)}^{-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta} \int_{t+\theta}^{t-\tau^{-}-\frac{j_i-1}{2^i}\delta-(i-1)\delta} \dot{x}^T(s)Q_{ij_{i}} \dot{x}(s){\rm d}s{\rm d}\theta. $

因为不等时滞分割法, 所引入的时间变量$\rho_{k}(t)$是不同的且在每个子区间中都是变化的.

注3.3  在本文中, 通过构造一个新的Lyapunov-Krasovskii函数, 其中一些项包含三重积分, 比如

$ \sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}}\int_{-\tau^{-}-\frac{j_{i}}{2^{i}}\delta-(i-1)\delta}^{-\tau^{-}-\frac{j_{i}-1}{2^{i}}\delta-(i-1)\delta}\int_{\eta}^{-\tau^{-}-\frac{j_{i}-1}{2^{i}}\delta-(i-1)\delta}\int_{t+\theta}^{t}\dot{x}^T(s)U_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta {\rm d}\eta, $
$ \sum\limits_{i=1}^{r}\sum\limits_{j_{i}=1}^{2^{i}}\int_{-\tau^{-}-\frac{j_{i}}{2^{i}}\delta-(i-1)\delta}^{-\tau^{-}-\frac{j_{i}-1}{2^{i}}\delta-(i-1)\delta}\int_{-\tau^{-}-\frac{j_{i}}{2^{i}}\delta-(i-1)\delta}^{\eta}\int_{t+\theta}^{t}\dot{x}^T(s)W_{ij_{i}}\dot{x}(s){\rm d}s{\rm d}\theta {\rm d}\eta, $

这在改进低保守性的结果中起到重要作用.

注3.4  时滞分解的思想是受到文献[18]的启发, 但本文采用的是新不等时滞分割法, 这是一个特别的方法, 因为在每个子区间中拥有不同的变化趋势.在之前的方法中, 我们通常假设每个子区间拥有相同的状态, 但实际上状态会随着实间的改变而改变.为了获得普遍性的结论, 新不等时滞分割法在本文中被引入.

注3.5  延迟区间$[\tau^{-}, \tau^{+}]$被分解为$r$个子区间, 每个子区间的长度不相等, 在每个子区间中应用牛顿莱布尼兹公式, 并且选择不同的无权矩阵, 这将导致较低保守性的结果.

4 例证

在此部分, 将给出两个数值实例来说明所提方法的有效性.

例1  对于系统 (2.1), 给出以下参数:

$ \begin{array}{*{20}{c}} {A = \left[{\begin{array}{*{20}{c}} {2}&0\\ {0}&2 \end{array}} \right], B = \left[{\begin{array}{*{20}{c}} {1}&1\\ {-1}&{-1} \end{array}} \right], C = \left[{\begin{array}{*{20}{c}} {0.88}&1\\ {1}&2 \end{array}} \right], }\\ {D = 0, {\Sigma ^ -} = diag(0, 0), {\Sigma ^ + } = diag(0.4, 0.8), {\tau ^ -} = 0, } \end{array} $

激活函数假设为$f_{i}(x_i)=0.5(|x_i+1|-|x_i-1|)$, $i=1, 2$.

对于不同的未知$\mu$的上界$ \tau^{+}$可通过本文中定理3.1得到, 将文献[6-8, 13, 16-20]的结果列在表 1中, 此例明显显示了对现有结果的改进.

表 1 例1中对于不同$\mu$所允许的$\tau^{+}$的上限

注4.1  从表 1中可知, 相对于文献[6-8, 13, 16-20], 我们的结果有更低的保守性.进一步, 如果$r$值较大, 那么时间延迟的上界也将变大.因此, 通过使用新不等时滞分割法可得到更好的结果.

如果令$\tau^{+}=2.9184$, 初始状态$(-0.2, 0.2)^T$, 全局渐近稳定的结果可通过图 1被证实. 图 1显示了在所给参数的条件下, 系统 (2.1) 是全局渐近稳定的.

图 1 例1中系统 (2.1) 的状态轨迹图

例2  对于系统 (2.1), 给出以下参数:

$ \begin{array}{*{20}{c}} {A = \left[{\begin{array}{*{20}{c}} {1.2769}&0&0&0\\ 0&{0.6231}&0&0\\ 0&0&{0.9230}&0\\ 0&0&0&{0.4480} \end{array}} \right], B = \left[{\begin{array}{*{20}{c}} {-0.0373}&{0.0482}&{-0.3351}&{0.2336}\\ {-1.6033}&{0.5988}&{ - 0.3224}&{1.2352}\\ {0.3394}&{ - 0.0860}&{ - 0.3824}&{ - 0.5785}\\ { - 0.1311}&{0.3253}&{ - 0.9534}&{ - 0.5015} \end{array}} \right], }\\ {C = \left[{\begin{array}{*{20}{c}} {0.8674}&{-1.2405}&{-0.5325}&{0.0220}\\ {0.0474}&{-0.9164}&{0.0360}&{0.9816}\\ { - 1.8495}&{2.6117}&{ - 0.3788}&{0.8428}\\ { - 2.0413}&{0.5179}&{1.1734}&{ - 0.2775} \end{array}} \right], {\Sigma ^ + } = \left[{\begin{array}{*{20}{c}} {0.1137}&0&0&0\\ 0&{0.1279}&0&0\\ 0&0&{0.7994}&0\\ 0&0&0&{0.2368} \end{array}} \right], }\\ {D = 0, {\Sigma ^ -} = 0, {\tau ^ -} = 0, } \end{array} $

激活函数假设为$f_{i}(x_i)=a_{i}(|x_i+1|-|x_i-1|)$, $i=1, 2, 3, 4$.其中$a_1=0.05685$, $a_2=0.06395$, $a_3=0.3997$, $a_4=0.1184$对于不同的未知$\mu$的上界$\tau^{+}$可通过本文中定理3.1得到, 将文献[6-8, 13, 16-20]的结果列在表 2中, 通过表 2, 此例明显显示了对现有结果的改进.

表 2 例2中对于不同$\mu$所允许的$\tau^{+}$的上限

如果令$\tau^{+}=3.9957$, 初始状态$(-0.4, 0.5, -0.5, 0.4)^T$, 全局渐近稳定的结果可通过图 2被证实. 图 2显示了在所给参数的条件下, 系统 (2.1) 是全局渐近稳定的.

图 2 例2中系统 (2.1) 的状态轨迹图
5 总结

在该文中, 新的不等时滞分割法被应用于分析具有离散和分布式延迟的神经网络系统的稳定性判据.关于通过构建新的Lyapunov-Krasovskii函数而提出的新的不等时滞分割法, 其中考虑了涉及三重积分的一些项.结合一些有效的数学技术和新的不等时滞分割法, 可以显著增强获得时间延迟最大上限的效率.最后, 提出了保守性更小的稳定性标准.并给出了数值仿真以证明所提技术与一些现有结果相比的有效性.

参考文献
[1] Chen F W, Garnier H, Gilson M. Robust identification of continuous-time models with arbitrary time-delay from irregularly sampled data. Journal of Process Control, 2015, 25: 19–27. DOI:10.1016/j.jprocont.2014.10.003
[2] Zhao Z L, Liu F Z, Xie X C, Liu X H, Tang Z M. Asymptotic stability of bidirectional associative memory neural networks with time-varying delays via delta operator approach. Neurocomputing, 2013, 117: 40–46. DOI:10.1016/j.neucom.2012.12.008
[3] Ratnavelu K, Manikandan M, Balasubramaniam P. Synchronization of fuzzy bidirectional associative memory neural networks with various time delays. Applied Mathematics and Computation, 2015, 270: 582–605. DOI:10.1016/j.amc.2015.07.061
[4] Yin C, Chen Y Q, Stark B, Zhong S, Lau E. Fractional-order adaptive minimum energy cognitive lighting control strategy for the hybrid lighting system. Energy and Buildings, 2015, 87: 176–184. DOI:10.1016/j.enbuild.2014.11.036
[5] Yin C, Chen Y Q, Zhong S M. Fractional-order sliding mode based extremum seeking control of a class of nonlinear system. Automatica, 2014, 50: 3173–3181. DOI:10.1016/j.automatica.2014.10.027
[6] He Y, Liu G, Rees D. New delay-dependent stability criteria for neural networks with time-varying delay. IEEE Trans:Neural Networks, 2007, 18: 310–314. DOI:10.1109/TNN.2006.888373
[7] He Y, Liu G, Rees D, Wu M. Stability analysis for neural networks with time-varying interval delay. IEEE Trans:Neural Networks, 2007, 18: 1850–1854. DOI:10.1109/TNN.2007.903147
[8] Li T, Ye X L. Improved stability criteria of neural networks with time-varying delays:an augmented LKF approach. Neurocomputing, 2010, 73: 1038–1047. DOI:10.1016/j.neucom.2009.10.001
[9] Gu K Q. A further refinement of discretized Lyapunov functional method for the stability of time-delay systems. Int J Control, 2001, 74: 967–976. DOI:10.1080/00207170110047190
[10] Li Y Y, Zhong S M, Cheng J, Shi K B, Ren J J. New passivity criteria for uncertain neural networks with time-varying delay. Neurocomputing, 2016, 171(1): 1003–1012.
[11] Shi K B, Zhong S M, Zhu H, Liu X Z, Zeng Y. New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach. Journal of the Franklin Instutute, 2015, 352: 155–176. DOI:10.1016/j.jfranklin.2014.10.005
[12] Kharitonov Vladimir L. Predictor based stabilization of neutral type systems with input delay. Automatica, 2015, 52: 125–134. DOI:10.1016/j.automatica.2014.11.005
[13] Xiao S, Zhang X. New globally asymptotic stability criteria for delayed cellular neural networks. IEEE Trans:Circuits Systems Ⅱ, 2009, 56: 659–663. DOI:10.1109/TCSII.2009.2024244
[14] Balasubramaniam P, Lakshmanan S, Manivannan A. Rubust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varing delays. Chaos:Solotons and Fractals, 2012, 45: 483–495. DOI:10.1016/j.chaos.2012.01.011
[15] Li T, Song A G, Xue M X, Zhang H T. Stability analysis on delayed neural networks based on an improved delay-partitioning approach. Journal of Computational and Applied Mathematics, 2011, 235: 3086–3095. DOI:10.1016/j.cam.2010.10.002
[16] Zhang H, Liu Z, Huang G, Wang Z. Novel weighting-delaybased stability criteria for recurrent neural networks with time-varying delay. IEEE Trans:Neural Networks, 2010, 21: 91–106. DOI:10.1109/TNN.2009.2034742
[17] Zhang X, Han Q. New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks. IEEE Trans:Neural Networks, 2009, 20: 533–539. DOI:10.1109/TNN.2009.2014160
[18] Tian J K, Xiong W J, Xu F. Improved delay-partitioning method to stability analysis for neural networks with discrete and distributed time-varying delays. Applied Mathematical and Computation, 2014, 233: 152–164. DOI:10.1016/j.amc.2014.01.129
[19] Zeng H, He Y, Wu M, Zhang C. Complete delay-decomposing approach to asymptotic stability for neural networks with time-varying delays. IEEE Trans:Neural Networks, 2011, 22: 806–812. DOI:10.1109/TNN.2011.2111383
[20] Ge C, Hua C, Guan X. New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach. IEEE Trans:Neural Networks, 2014, 25(7): 1378–1383. DOI:10.1109/TNNLS.2013.2285564
[21] Li C, Liao X. Passivity analysis of neural network with time delay. IEEE Trans, Circuits Systems Ⅱ:Express Briefs, 2015, 52: 471–475.
[22] Park P, Ko J W, Jeong C K. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 2011, 47: 235–238. DOI:10.1016/j.automatica.2010.10.014
[23] Shi K B, Zhu H, Zhong S M, Zeng Y, Zhang Y P. Improved delay-dependent stability criteria for neural networks with discrete and distributed time-varying delays using a delay-partitioning approach. Nonlinear Dynamics, 2015, 79(1): 575–592. DOI:10.1007/s11071-014-1687-4
[24] Hui J J, Kong X Y, Zhang H X, Zhou X. Delay-partitioning approach for system with interval time-varying delay and nonlinear perturbations. Journal of Computation and Applied Mathematics, 2015, 281: 74–81. DOI:10.1016/j.cam.2014.11.060
[25] Xia J W, Park Ju H, Zeng H B. Improved delay-dependent robust stability analysis for neutral-type uncertain neural networks with Markovian jumping parameters and time-varying delays. Neurocomping, 2015, 149: 1198–1205. DOI:10.1016/j.neucom.2014.09.008