数学物理学报  2017, Vol. 37 Issue (2): 217-227   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
赵艳辉
张学军
单位球上Dirichlet型空间到Zμ型空间的积分型算子
赵艳辉1, 张学军2     
1. 湖南科技学院理学院 湖南永州 425199;
2. 湖南师范大学数学与计算机科学学院 长沙 410006
摘要:该文利用泛函分析以及多复变的方法,研究了单位球B上Dirichlet型空间Dp到Zygmund型空间Zμ的积分型算子的有界性和紧性问题.获得了单位球上Dirichlet型空间到Zygmund型空间的积分型算子为有界算子和紧算子的充要条件.
关键词Dirichlet型空间    Zygmund型空间    积分型算子    有界性    紧性    
On an Integral-Type Operator from Dirichlet Spaces to Zygmund Type Spaces on the Unit Ball
Zhao Yanhui1, Zhang Xuejun2     
1. College of Science, Hunan University of Science and Engineering, Hunan Yongzhou 425199;
2. College of Mathematics and Computer Science, Hunan Normal University, Changsha 410006
Abstract: Some questions of integral-type Operator from Dirichlet space to Zygmund type spaces in the unit ball were studied in this paper. By the methods of functional analysis and several complex variables, the necessary and sufficient conditions are given for integral-type operator to be bounded and compact from Dirichlet space to Zygmund type spaces in the unit ball.
Key words: Dirichlet space     Zygmund type spaces     Integral-type operator     Bounded     Compact    
1 引言

$B$表示${\bf C}^{n}$上的单位球, $\partial B$表示单位球面, d$v$为标准体测度, 满足$V (B)=1$, d$\sigma$为标准面测度, 满足$\sigma (\partial B)=1$, $H (B)$代表$B$上的全纯函数类.

Dirichlet型空间$D_p$的定义如下:对$p\in {\Bbb R}, $ $f\in D_p$是指$f\in H (B)$

$ \|f\|_{D_p}^2=\sum\limits_{|\alpha|\geq0}(n+|\alpha|)^p|b_\alpha|^2\varpi_\alpha<+\infty, $

这里$\alpha=(\alpha_1, \cdots, \alpha_n)$为多重指标, $|\alpha|=\alpha_1+\cdots+\alpha_n$, $\alpha!=\alpha_1!\cdots\alpha_n!$, $z^\alpha=z_1^{\alpha_1}\cdot\cdots\cdot z_n^{\alpha_n}$,

$ f(z)=\sum\limits_{|\alpha|\geq0}b_\alpha z^\alpha, \ \ \varpi_\alpha=\int_{\partial B}|\xi^\alpha|^2{\rm d}\sigma(\xi)=\frac{(n-1)!\alpha!}{(n+|\alpha|-1)!}. $

$[0, 1)$上的连续函数$\mu (r)>0$, 如果存在常数$0 < a < b$, 使得

(ⅰ) $\frac{\mu (r)}{(1-r)^a}$$[0, 1)$上单调递减且$\lim\limits_{r\rightarrow 1^-}\frac{\mu (r)}{(1-r)^a}=0, $

(ⅱ) $\frac{\mu (r)}{(1-r)^b}$$[0, 1)$上单调递增且$\lim\limits_{r\rightarrow1^-} \frac{\mu (r)}{(1-r)^b}=+\infty, $

则称$\mu$$[0, 1)$上的正规函数.

$\mu$$[0, 1)$上的正规函数, $B$上的全纯函数$f$如果满足

$ \|f\|_{\beta_\mu}=|f(0)|+\sup\limits_{z\in B}\mu(|z|)|Rf(z)|<+\infty, $

则称$f$属于$\beta_\mu$空间, 若$\lim\limits_{|z|\rightarrow1}\mu (|z|)|Rf (z)|=0$, 则称$f$属于$\beta_{\mu, 0}$空间.这里径向导数$Rf (z)=\sum\limits_{j=1}^nz_j\frac{\partial f (z)}{\partial z_j}$.

$\mu$$[0, 1)$上的正规函数, $B$上的全纯函数$f$如果满足

$ \|f\|_{Z_\mu}=|f(0)|+\sup\limits_{z\in B}\mu(|z|)|R^{(2)}f(z)|<+\infty, $

则称$f$属于Zygmund型空间$Z_\mu$, 若$\lim\limits_{|z|\rightarrow1}\mu (|z|)|R^{(2)}f (z)|=0$, 则称$f$属于小Zygmund型空间$Z_{\mu, 0}$ (见文献[1-3]).如果$\mu (r)=1-r^2$, Zygmund型空间$Z_\mu$ (小Zygmund型空间$Z_{\mu, 0}$) 就是典型的Zygmund空间$Z$(小Zygmund空间$Z_0$).这里$R^{(2)}f (z)=R (Rf (z))$.

$\varphi$$B$$B$的全纯自映射, $g\in H (B)$$g (0)=0$, 则$\varphi$$g$诱导的$H (B)$上的算子$P_\varphi^g$定义为

$ P_\varphi^g(f)(z)=\int_0^1f(\varphi(tz))g(tz)\frac{{\rm d}t}{t}, z\in B. $

文献[4-9]研究了该类算子的性质.若用$Rg$代替$g$算子$P_g$就是加权Cesàro算子, 它在文献[10]被引入并研究, 文献[11-12]讨论了单位球上Dirichlet型空间到$\beta_{\mu}$空间和Dirichlet型空间到Zygmund型空间的加权Cesàro算子的有界性和紧性.文献[13-14]讨论了混合模空间和Dirichlet空间到Zygmund型空间的积分型算子$P_{g}:=P_\varphi^g, $其中$\varphi (z)=z$时的有界性和紧性.本文的主要工作就是在$C^{n}$中的单位球上来给出$P_{g}:=P_\varphi^g, $其中$\varphi (z)=z$时为Dirichlet型空间到$Z_\mu$空间上的有界算子和紧算子的充要条件, 并推广了文献[14]的结论.本文中$z=(z_{1}, \cdots, z_{n}), \omega=(\omega_{1}, \cdots, \omega_{n}), \langle z, \omega\rangle=\Sigma_{j=1}^{n}z_{j}\overline{\omega}_{j}$, 我们用记号$c$来表示与变量$z, \omega $无关的正数, $c$可以与某些范数或有界量有关, 不同的地方可以表示不同的正常数.

2 有关引理及其证明

引理2.1[4]  设$f, g\in H (B)$$g (0)=0$, 则

$ RP_\varphi^g(f)(z)=f(\varphi(z))g(z). $

引理2.2[15]  设$p\in {\Bbb R}$, $f\in D_p$, 则

$ |f(z)|\leq \left\{\begin{array}{ll} \displaystyle{O( 1 )}, & \quad p>n, \\[2mm] \displaystyle{ O\bigg((\log\frac{2}{1-|z|^{2}})^{\frac{1}{2}}\bigg)}, & \quad p=n, \\ [3mm] \displaystyle{O\bigg(\frac{1}{(1-|z|^2)^{\frac{n-p}{2}}}\bigg)}, & \quad p<n, \end{array} \right. $
$ |Rf(z)|\leq \left\{\begin{array}{ll} \displaystyle{O( 1 )}, & \quad p>n+2, \\[2mm] \displaystyle{ O\bigg((\log\frac{2}{1-|z|^{2}})^{\frac{1}{2}}\bigg)}, & \quad p=n+2, \\[3mm] \displaystyle{O\bigg(\frac{1}{(1-|z|^2)^{\frac{n+2-p}{2}}}\bigg)}, & \quad p<n+2. \end{array} \right. $

引理2.3  设$p\in {\Bbb R}$, $\mu$$[0, 1)$上的正规函数, 则$P_{g}:D_p\rightarrow Z_{\mu}$是紧算子的充要条件是:对任意满足条件:(1) 在$D_p$上有界; (2) 在$B$的任一紧子集上一致收敛于0的序列$\{f_{j}\}$, 都有

$ \|P_{g}(f_{j})\|_{Z_{\mu}}\rightarrow0, \quad j\rightarrow+\infty. $

  由引理2.2和Montel定理按定义可证.

定理2.4[3]  $Z_{\mu, 0}$中的闭子集$K$是紧子集的充要条件是$K$是有界集, 且满足

$ \lim\limits_{|z|\rightarrow1}\sup\limits_{f\in K}\mu(|z|)|R^{(2)}f(z)|=0. $
3 主要结论及证明

以下总假设$g\in H (B)$, $g (0)=0$.

定理3.1  设$p\in {\Bbb R}$, $\mu$$[0, 1)$上正规, 则$P_{g}$$D_{p}$$Z_{\mu}$的有界算子的充要条件是:

(1) 当$p < n$时,

$\sup\limits_{z\in B}\frac{\mu(|z|)|g(z)|}{(1-|z|^2)^{\frac{n+2-p}{2}}}<+\infty$ (3.1)

$\sup\limits_{z\in B}\frac{\mu(|z|)|Rg(z)|}{(1-|z|^2)^{\frac{n-p}{2}}}<+\infty$ (3.2)

同时成立;

(2) 当$p=n$时, (3.1) 式成立且

$\sup\limits_{z\in B}\mu(|z|)|Rg(z)|\cdot \left(\log\frac{2}{1-|z|^{2}}\right)^{\frac{1}{2}}<+\infty;$ (3.3)

(3) 当$n < p < n+2$时, (3.1) 式成立且$g\in \beta_{\mu}$;

(4) 当$p=n+2$时, $g\in \beta_{\mu}$

$\sup\limits_{z\in B}\mu(|z|)|g(z)|\cdot \left(\log\frac{2}{1-|z|^{2}}\right)^{\frac{1}{2}}<+\infty;$ (3.4)

(5) 当$p>n+2$时, $g\in \beta_{\mu}.$

  先证充分性:假设$g\in \beta_{\mu}$, 则

$ \begin{align} & \mu (|z|)|g(z)|=\mu (|z|)\left| g(0)+\int_{0}^{1}{\langle \nabla g(tz), \bar{z}\rangle }\ \text{d}t \right| \\ & \le \mu (0)\|g{{\|}_{{{\beta }_{\mu }}}}+|z|\mu (|z|)\int_{0}^{1}{\frac{\|g{{\|}_{{{\beta }_{\mu }}}}}{\mu (t|z|)}}\text{d}t \\ & \le \{1+\mu (0)\}\|g{{\|}_{{{\beta }_{\mu }}}}. \\ \end{align} $

如果 (3.1)-(3.4) 式成立, 任取$f\in D_{p}$, 由$P_{g}(f)(0)=0$和引理2.1, 2.2以及上式分情况可得

$ \|{{P}_{g}}(f){{\|}_{{{Z}_{\mu }}}}\le \underset{z\in B}{\mathop{\sup }}\, \mu (|z|)|Rf(z)g(z)|+\underset{z\in B}{\mathop{\sup }}\, \mu (|z|)|f(z)Rg(z)| $
$ \begin{gathered} \leqslant \left\{ \begin{gathered} c\mathop {\sup }\limits_{z \in B} \{ \frac{{\mu (|z|)|g(z)|}}{{{{(1- |z{|^2})}^{\frac{{n + 2- p}}{2}}}}} + \frac{{\mu (|z|)|Rg(z)|}}{{{{(1- |z{|^2})}^{\frac{{n - p}}{2}}}}}\} \cdot f{_{{D_p}}}, p < n, \hfill \\ c\mathop {\sup }\limits_{z \in B} \{ \frac{{\mu (|z|)|g(z)|}}{{{{(1 - |z{|^2})}^{\frac{{n + 2 - p}}{2}}}}} + \mu (|z|)|Rg(z)|{(\log \frac{2}{{1 - |z{|^2}}})^{\frac{1}{2}}}\} \cdot f{_{{D_p}}}, p = n, \hfill \\ c\mathop {\sup }\limits_{z \in B} \{ \frac{{\mu (|z|)|g(z)|}}{{{{(1 - |z{|^2})}^{\frac{{n + 2 - p}}{2}}}}} + \mu (|z|)|Rg(z)|\} \cdot f{_{{D_p}}}, n < p < n + 2, \hfill \\ c\mathop {\sup }\limits_{z \in B} \{ \mu (|z|)|g(z)|{(\log \frac{2}{{1 - |z{|^2}}})^{\frac{1}{2}}} + \mu (|z|)|Rg(z)|\} \cdot f{_{{D_p}}}, p = n + 2, \hfill \\ c\mathop {\sup }\limits_{z \in B} \{ \mu (|z|)|g(z)| + \mu (|z|)|Rg(z)|\} \cdot f{_{{D_p}}}, p > n + 2 \hfill \\ \end{gathered} \right. \hfill \\ \leqslant cf{_{{D_p}}}. \hfill \\ \end{gathered} $

这表明$P_{g}$$D_{p}$$Z_{\mu}$的有界算子.

必要性:设$P_{g}$$D_{p}$$Z_{\mu}$的有界算子.取$f (z)=1$, 因为$\varpi_{\alpha}=1, |\alpha|=0, b_{\alpha}=1$,

$ \|f\|^{2}_{D_{p}}=\sum_{|\alpha|\geq0}(n+|\alpha|)^{p}|b_{\alpha}|^{2}\varpi_{\alpha}=n^{p}. $

所以$f\in D_{p}$.又$P_gf (0)=0$, 且

$ \mu (|z|)|{R^{(2)}}({P_g}f)(z)| = \mathop {\sup }\limits_{z \in B} \mu (|z|)|Rf(z)g(z) + f(z)Rg(z)| = \mathop {\sup }\limits_{z \in B} \mu (|z|)|Rg(z)| < + \infty . $

从而$g\in \beta_{\mu}$.

(ⅰ) 先证 (3.1) 式成立.当$p < n+2$时, 设$\frac{1}{\sqrt{2}} < |\omega| < 1$, 取

$ f_\omega(z)=\frac{2(1-|\omega|^2)}{(1-\langle z, \omega\rangle)^{\frac{n-p}{2}+1}}-\frac{(1-|\omega|^2)^{\frac{n-p}{2}+2}}{(1-\langle z, \omega\rangle)^{n+2-p}}-\frac{(1-|\omega|^2)^{n+3-p}}{(1-\langle z, \omega\rangle)^{\frac{3n-3p}{2}+3}}. $

经计算, 由Stiring公式有

$ \begin{gathered} {f_\omega }_{{D_p}}^2 \leqslant \sum\limits_{|\alpha | \geqslant 0} {{{(n + |\alpha |)}^p}} \{ |\frac{{\Gamma (|\alpha | + 1 + \frac{{n - p}}{2})}}{{\alpha !\Gamma (1 + \frac{{n - p}}{2})}}2(1 - |\omega {|^2}){|^2} \hfill \\ + |\frac{{\Gamma (|\alpha | + n + 2 - p)}}{{\alpha !\Gamma (n + 2 - p)}}{(1 - |\omega {|^2})^{\frac{{n - p}}{2} + 2}}{|^2} \hfill \\ + |\frac{{\Gamma (|\alpha | + 3 + \frac{{3n - 3p}}{2})}}{{\alpha !\Gamma (3 + \frac{{3n - 3p}}{2})}}{(1 - |\omega {|^2})^{n + 3 - p}}{|^2}\} |{\omega ^\alpha }{|^2} \cdot \frac{{(n - 1)!\alpha !}}{{(n + |\alpha | - 1)!}} \hfill \\ = \frac{{(n - 1)!4{{(1 - |\omega {|^2})}^2}}}{{{\Gamma ^2}(1 + \frac{{n - p}}{2})}}\sum\limits_{k \geqslant 0} {\frac{{{{(n + k)}^p}{\Gamma ^2}(k + 1 + \frac{{n - p}}{2})}}{{k!(n + k - 1)!}}} |\omega {|^{2k}} \hfill \\ + \frac{{(n - 1)!{{(1 - |\omega {|^2})}^{4 + n - p}}}}{{{\Gamma ^2}(n + 2 - p)}}\sum\limits_{k \geqslant 0} {\frac{{{{(n + k)}^p}{\Gamma ^2}(k + n + 2 - p)}}{{k!(n + k - 1)!}}} |\omega {|^{2k}} \hfill \\ + \frac{{(n - 1)!{{(1 - |\omega {|^2})}^{2n + 6 - 2p}}}}{{{\Gamma ^2}(\frac{{3n - 3p}}{2} + 3)}}\sum\limits_{k \geqslant 0} {\frac{{{{(n + k)}^p}{\Gamma ^2}(k + 3 + \frac{{3n - 3p}}{2})}}{{k!(n + k - 1)!}}} |\omega {|^{2k}} \hfill \\ \approx c{(1 - |\omega {|^2})^2}\sum\limits_{k \geqslant 0} k |\omega {|^{2k}} \leqslant c. \hfill \\ \end{gathered} $

所以$\|f_\omega\|_{D_p}\leq c$.

$z=\omega$, 有$f_\omega (\omega)=0, Rf_\omega (\omega)=-(\frac{3n-3p}{2}+3)\frac{|\omega|^2}{(1-|\omega|^2)^{\frac{n-p}{2}+1}}$, 所以

$ \begin{gathered} c \geqslant {P_g}{f_\omega }{_{{Z_\mu }}} \geqslant \mathop {\sup }\limits_{\omega \in B} \mu (|\omega |)|R{f_\omega }(\omega )g(\omega ) + {f_\omega }(\omega )Rg(\omega )| \hfill \\ \geqslant {c_1}\mathop {\sup }\limits_{\omega \in B} (\frac{{3n - 3p}}{2} + 3)\frac{{\mu (|\omega |)|g(\omega )|}}{{{{(1 - |\omega {|^2})}^{\frac{{n + 2 - p}}{2}}}}}, \hfill \\ \end{gathered} $

所以 (3.1) 式成立.

(ⅱ) 再证 (3.2) 式成立. $\forall\omega\in B$, 取

$ h_\omega(z)=\frac{2(1-|\omega|^2)}{(1-\langle z, \omega\rangle)^{\frac{n-p}{2}+1}}-\frac{(1-|\omega|^2)^{\frac{n-p}{2}+2}}{(1-\langle z, \omega\rangle)^{n+2-p}}. $

经计算, 由Stiring公式有

$ \begin{gathered} {h_\omega }_{{D_p}}^2 \leqslant \sum\limits_{|\alpha | \geqslant 0} {{{(n + |\alpha |)}^p}} \{ |\frac{{\Gamma (|\alpha | + 1 + \frac{{n - p}}{2})}}{{\alpha !\Gamma (1 + \frac{{n - p}}{2})}}2(1 - |\omega {|^2}){|^2} \hfill \\ + |\frac{{\Gamma (|\alpha | + n + 2 - p)}}{{\alpha !\Gamma (n + 2 - p)}}{(1 - |\omega {|^2})^{\frac{{n - p}}{2} + 2}}{|^2}\} |{\omega ^\alpha }{|^2} \cdot \frac{{(n - 1)!\alpha !}}{{(n + |\alpha | - 1)!}} \hfill \\ = \frac{{(n - 1)!4{{(1 - |\omega {|^2})}^2}}}{{{\Gamma ^2}(1 + \frac{{n - p}}{2})}}\sum\limits_{k \geqslant 0} {\frac{{{{(n + k)}^p}{\Gamma ^2}(k + 1 + \frac{{n - p}}{2})}}{{k!(n + k - 1)!}}} |\omega {|^{2k}} \hfill \\ + \frac{{(n - 1)!{{(1 - |\omega {|^2})}^{4 + n - p}}}}{{{\Gamma ^2}(n + 2 - p)}}\sum\limits_{k \geqslant 0} {\frac{{{{(n + k)}^p}{\Gamma ^2}(k + n + 2 - p)}}{{k!(n + k - 1)!}}} |\omega {|^{2k}} \hfill \\ \approx c{(1 - |\omega {|^2})^2}\sum\limits_{k \geqslant 0} k |\omega {|^{2k}} \leqslant c. \hfill \\ \end{gathered} $

所以$\|h_\omega\|_{D_p}\leq c$.

$z=\omega$, 有$h_\omega (\omega)=\frac{1}{(1-|\omega|^2)^{\frac{n-p}{2}}}, Rh_\omega (\omega)=0$, 由$P_{g}$$D_{p}$$Z_{\mu}$的有界算子知

$ \begin{gathered} c \geqslant {P_g}{h_\omega }{_{{Z_\mu }}} \geqslant \mathop {\sup }\limits_{\omega \in B} \mu (|\omega |)|R{h_\omega }(\omega )g(\omega ) + {h_\omega }(\omega )Rg(\omega )| \hfill \\ = \mathop {\sup }\limits_{\omega \in B} \frac{{\mu (|\omega |)|Rg(\omega )|}}{{{{(1 - |\omega {|^2})}^{\frac{{n - p}}{2}}}}}, \hfill \\ \end{gathered} $

也就是 (3.2) 式成立.

(ⅲ) 下证 (3.3) 式成立.当$p=n$时, $\forall\omega\in B$, 取

$ \begin{gathered} {I_\omega }(z) = {\left( {\log \frac{2}{{1 - |\omega {|^2}}}} \right)^{ - \frac{1}{2}}} \cdot \log \frac{2}{{1 - \langle z, \omega \rangle }} \hfill \\ = {\left( {\log \frac{2}{{1 - |\omega {|^2}}}} \right)^{ - \frac{1}{2}}} \cdot (\log 2 + \sum\limits_{|\alpha | \geqslant 1} {\frac{{(|\alpha | - 1)!}}{{\alpha !}}} {{\bar \omega }^\alpha } \cdot {z^\alpha }). \hfill \\ \end{gathered} $

经计算, 由Stiring公式有

$ \begin{gathered} {I_\omega }_{{D_n}}^2 = {\left( {\log \frac{2}{{1 - |\omega {|^2}}}} \right)^{ - 1}}\{ {n^n}\log 2 + \sum\limits_{|\alpha | \geqslant 1} {{{(n + |\alpha |)}^n}} {\left( {\frac{{(|\alpha | - 1)!}}{{\alpha !}}} \right)^2}|{\omega ^\alpha }{|^2} \cdot {\varpi _\alpha }\} \hfill \\ \approx {\left( {\log \frac{2}{{1 - |\omega {|^2}}}} \right)^{ - 1}}(\log 2 + \sum\limits_{k = 1}^{ + \infty } {\frac{{|\omega {|^{2k}}}}{k}} ) = 1. \hfill \\ \end{gathered} $

所以$\|I_\omega\|_{D_n}\leq c$.

$z=\omega$, 有$I_\omega (\omega)=(\log\frac{2}{1-|\omega|^2})^{\frac{1}{2}}, RI_\omega (\omega)=(\log\frac{2}{1-|\omega|^2})^{-\frac{1}{2}}\cdot\frac{|\omega|^2}{1-|\omega|^2}, $$P_{g}$$D_{p}$$Z_{\mu}$的有界算子有

$ c\geq\|P_gI_\omega\|_{Z_\mu}\geq\sup\limits_{\omega\in B}\mu(|\omega|)|RI_\omega(\omega)g(\omega)+I_\omega(\omega)Rg(\omega)|. $

因为$\frac{|\omega|}{(\log\frac{2}{1-|\omega|^2})^{\frac{1}{2}}}\leq\frac{1}{\sqrt{\log2}}, $又由 (3.1) 式知

$ \sup\limits_{\omega\in B}\mu(|\omega|)|Rg(\omega)|\bigg(\log\frac{2}{1-|\omega|^2}\bigg)^{\frac{1}{2}} \leq \|P_gI_\omega\|_{Z_\mu}+\sup\limits_{\omega\in B}\frac{\mu(|\omega|)|g(\omega)||\omega|}{1-|\omega|^2}\cdot\frac{|\omega|}{(\log\frac{2}{1-|\omega|^2})^{\frac{1}{2}}}\leq c, $

也就是 (3.3) 式成立.

(ⅳ) 最后证 (3.4) 式成立.当$p=n+2$时, $\forall\omega\in B$, 取

$ J_\omega(z)=\left(\log\frac{2}{1-|\omega|^2}\right)^{-\frac{1}{2}}\cdot\sum\limits_{k=1}^{+\infty}\frac{\langle z, \omega\rangle^k}{k^2}. $

经计算, 由Stiring公式有

$ \begin{gathered} {J_\omega }_{{D_{n + 2}}}^2 \leqslant \sum\limits_{k = 1}^\infty {{{(k + n)}^{n + 2}}} \cdot \frac{{(n - 1)!k!}}{{(k + n - 1)!{k^4}}} \cdot {\left( {\log \frac{2}{{1 - |\omega {|^2}}}} \right)^{ - 1}}|\omega {|^{2k}} \hfill \\ \approx {\left( {\log \frac{2}{{1 - |\omega {|^2}}}} \right)^{ - 1}} \cdot \sum\limits_{k = 1}^{ + \infty } {\frac{{|\omega {|^{2k}}}}{k}} < 1. \hfill \\ \end{gathered} $

所以$\|J_\omega\|_{D_{n+2}}\leq c$.

$z=\omega$, 有$|J_\omega (\omega)|=(\log\frac{2}{1-|\omega|^2})^{-\frac{1}{2}}\cdot\sum\limits_{k=1}^{+\infty}\frac{|\omega|^{2k}}{k^2} \leq c, |RJ_\omega (\omega)|\geq (\log\frac{2}{1-|\omega|^2})^{-\frac{1}{2}}\cdot\log\frac{2}{1-|\omega|^2}-\sqrt{\log2}, $$P_{g}$$D_{p}$$Z_{\mu}$的有界算子有

$ c \geqslant {P_g}{J_\omega }{_{{Z_\mu }}} \geqslant \mathop {\sup }\limits_{\omega \in B} \mu (|\omega |)|R{J_\omega }(\omega )g(\omega ) + {J_\omega }(\omega )Rg(\omega )|. $

又由$g\in \beta_{\mu}$

$ \begin{gathered} \mathop {\sup }\limits_{\omega \in B} \mu (|\omega |)|g(\omega )|{(\log \frac{2}{{1 - |\omega {|^2}}})^{\frac{1}{2}}} \hfill \\ \leqslant \sqrt {\log 2} \mathop {\sup }\limits_{\omega \in B} \mu (|\omega |)|g(\omega )| + {P_g}{J_\omega }{_{{Z_\mu }}} + \hfill \\ c\mathop {\sup }\limits_{\omega \in B} \mu (|\omega |)|Rg(\omega )|{(\log \frac{2}{{1 - |\omega {|^2}}})^{ - \frac{1}{2}}} \leqslant c, \hfill \\ \end{gathered} $

也就是 (3.4) 式成立.

所以定理3.1得证.

定理3.2  设$p\in {\Bbb R}$, $\mu$$[0, 1)$上正规, 则$P_{g}$$D_{p}$$Z_{\mu}$的紧算子的充要条件是:

(1) 当$p < n$时,

$ \begin{gathered} \mathop {\sup }\limits_{\omega \in B} \mu (|\omega |)|g(\omega )|{(\log \frac{2}{{1 - |\omega {|^2}}})^{\frac{1}{2}}} \hfill \\ \leqslant \sqrt {\log 2} \mathop {\sup }\limits_{\omega \in B} \mu (|\omega |)|g(\omega )| + {P_g}{J_\omega }{_{{Z_\mu }}} + c\mathop {\sup }\limits_{\omega \in B} \mu (|\omega |)|Rg(\omega )| \hfill \\ {(\log \frac{2}{{1 - |\omega {|^2}}})^{ - \frac{1}{2}}} \leqslant c, \hfill \\ \end{gathered} $ (3.5)

$\lim\limits_{|z|\rightarrow1^-}\frac{\mu(|z|)|g(z)|}{(1-|z|^2)^{\frac{n+2-p}{2}}}=0$ (3.6)

同时成立;

(2) 当$p=n$时, (3.5) 式成立且

$\lim\limits_{|z|\rightarrow1^-}\frac{\mu(|z|)|Rg(z)|}{(1-|z|^2)^{\frac{n-p}{2}}}=0$ (3.7)

(3) 当$n < p < n+2$时, (3.5) 式成立且$g\in \beta_{\mu}$;

(4) 当$p=n+2$时, $g\in \beta_{\mu}$

$\lim\limits_{|z|\rightarrow1^-}\mu(|z|)|Rg(z)|\cdot \bigg(\log\frac{2}{1-|z|^{2}}\bigg)^{\frac{1}{2}}=0.$ (3.8)

(5) 当$p>n+2$时, $g\in \beta_{\mu}$.

  先证充分性:设$\{f_{j}\}$是在$B$上的任一紧子集上一致趋于0且满足$\|f_{j}\|_{D_p}\leq1$的任一序列, 根据文献[18]中定理1的证明可得:对任意非负整数, 有

$|R^{(k)}f_{j}(z)|\leq \frac{c||f_{j}||_{D_{p}}}{(1-|z)^{2})^{k+\frac{n-p}{2}}}\leq \frac{c}{(1-|z)^{2})^{k+\frac{n-p}{2}}}, $

根据文献[15]中引理3.2可得:$p>n$

$ \mathop {\lim }\limits_{j \to \infty } \mathop {\sup }\limits_{z\in B}|f_{j}(z)|=0. $

$p>n+2$

$ \mathop {\lim }\limits_{j \to \infty } \mathop {\sup }\limits_{z\in B}|Rf_{j}(z)|=0. $

$p < n$时, 由已知得$\forall \varepsilon >0$, 存在$0 < \delta < 1$, 当$\delta < |z| < 1$时, 有$\frac{\mu (|z|)|g (z)|}{(1-|z|^2)^{\frac{n+2-p}{2}}} < \varepsilon$, $\frac{\mu (|z|)|Rg (z)|}{(1-|z|^2)^{\frac{n-p}{2}}} < \varepsilon$, 从而$\mu (|z|)|g (z)| < \varepsilon, \mu (|z|)|Rg (z)| < \varepsilon$.

由于$\{f_{j}\}$$E=\{z||z|\leq\delta\}$上一致收敛于0, 故存在自然数$N$, 当$j>N$时有$|f_{j}(z)| < \varepsilon, $ $|Rf_{j}(z)| < \varepsilon$对一切$z\in E$成立, 从而当$j>N$时, 由引理2.2有

$ \begin{gathered} {P_g}{f_j}{_{{Z_\mu }}} = \{ \mathop {\sup }\limits_{|z| \leqslant \delta } + \mathop {\sup }\limits_{\delta < |z| < 1} \} \mu (|z|)|Rg(z){f_j}(z) + g(z)R{f_j}(z)| \hfill \\ \leqslant c\mathop {\sup }\limits_{|z| \leqslant \delta } \{ \mu (|z|)|Rg(z)||{f_j}(z)| + \mu (|z|)|g(z)||R{f_j}(z)|\} \hfill \\ + c\mathop {\sup }\limits_{\delta < |z| < 1} \{ \frac{{\mu (|z|)|Rg(z)|}}{{{{(1 - |z{|^2})}^{\frac{{n - p}}{2}}}}} + \frac{{\mu (|z|)|g(z)|}}{{{{(1 - |z{|^2})}^{\frac{{n + 2 - p}}{2}}}}}\} {f_j}{_{{D_p}}} \hfill \\ \leqslant 2c\varepsilon + 2c\varepsilon {f_j}{_{{D_p}}} < c\varepsilon . \hfill \\ \end{gathered} $

$\varepsilon $的任意性知$\lim\limits_{j\rightarrow \infty}\|P_{g}f_{j}\|_{Z_\mu}=0$, 由引理2.3知$P_{g}$$D_{p}$$Z_{\mu}$的紧算子.

结合开始的两个式子类似可证其它的情形.

必要性:设$P_{g}$$D_{p}$$Z_{\mu}$的紧算子, 则$P_{g}$$D_{p}$$Z_{\mu}$的有界算子, 取$f (z)=1\in D_{p}$, 有$g\in \beta_{\mu}$.

(ⅰ) 先证 (3.5) 式成立.当$p < n+2$时, 对于$B$中满足$\lim\limits_{j\rightarrow+\infty}|z^j|=1$的任意序列$\{z^j\}, (j=1, 2, \cdots)$, 取

$ f_j(z)=\frac{2(1-|z^j|^2)}{(1-\langle z, z^j\rangle)^{\frac{n-p}{2}+1}}-\frac{(1-|z^j|^2)^{\frac{n-p}{2}+2}}{(1-\langle z, z^j\rangle)^{n+2-p}}-\frac{(1-|z^j|^2)^{n+3-p}}{(1-\langle z, z^j\rangle)^{\frac{3n-3p}{2}+3}}. $

类似 (3.1) 式中的证明知$\|f_j\|_{D_p}\leq c, $ $f_j\in D_p$.且$f_j (z^j)=0, Rf_j (z^j)=-(\frac{3n-3p}{2}+3)\frac{|z^j|^2}{(1-|z^j|^2)^{\frac{n+2-p}{2}}}$.

下面再证$\{f_{j}\}$$B$的任一紧子集上一致收敛于0.对任意$0 < r < 1$, 有

$ \sup\limits_{|z|\leq r}|f_{j}(z)|\leq\sup\limits_{|z|\leq r} \frac{c(1-|z^j|^{2})} {(1-|z|^2)^{\frac{n-p}{2}+1}}= \frac{c(1-|z^j|^{2})} {(1-r^2)^{\frac{n-p}{2}+1}}\rightarrow0, ~ j\rightarrow\infty. $

所以$\{f_{j}\}$$B$的任一紧子集上一致收敛于0.由引理2.3有$\lim\limits_{j\rightarrow \infty}\|(P_{g}f_{j})\|_{Z_\mu}=0$, 即$\forall\varepsilon>0, $ $ \exists N>0$, 当$j>N$时, ($|z^j|\rightarrow1$) 有

$ c\varepsilon>\|(P_{g}f_{j})\|_{Z_\mu}\geq\mu(|z^j|)|Rf_j(z^j)g(z^j)+f_j(z^j) Rg(z^j)| \geq \frac{c\mu(|z^j|)|g(z^j)|}{(1-|z^j|^2)^{\frac{n+2-p}{2}}}. $

所以 (3.5) 式成立.

(ⅱ) 再证 (3.6) 式成立.

对于$B$中满足$\lim\limits_{j\rightarrow+\infty}|z^j|=1$的任意序列$\{z^j\}, (j=1, 2, \cdots)$, 取

$ h_j(z)=\frac{2(1-|z^j|^2)}{(1-\langle z, z^j\rangle)^{\frac{n-p}{2}+1}}-\frac{(1-|z^j|^2)^{\frac{n-p}{2}+2}}{(1-\langle z, z^j\rangle)^{n+2-p}}. $

类似 (3.2) 式中的证明知$\|h_j\|_{D_p}\leq c, $ $h_j\in D_p$, 且$Rh_j (z^j)=0, h_j (z^j)=\frac{1}{(1-|z^j|^2)^{\frac{n-p}{2}}}$.下面再证$\{h_{j}\}$$B$的任一紧子集上一致收敛于0.对任意$0 < r < 1$, 有

$ \sup\limits_{|z|\leq r}|h_{j}(z)|\leq\sup\limits_{|z|\leq r} \frac{c(1-|z^j|^{2})} {(1-|z|^2)^{\frac{n-p}{2}+1}}= \frac{c(1-|z^j|^{2})} {(1-r^2)^{\frac{n-p}{2}+1}}\rightarrow0, \ j\rightarrow\infty. $

所以$\{h_{j}\}$$B$的任一紧子集上一致收敛于0.由引理2.3有$\lim\limits_{j\rightarrow \infty}\|(P_{g}h_{j})\|_{Z_\mu}=0$, 即$\forall\varepsilon>0, $ $\exists N>0$, 当$j>N$时, ($|z^j|\rightarrow1$) 有

$ c\varepsilon>\|(P_{g}h_{j})\|_{Z_\mu}\geq\mu(|z^j|)|Rh_j(z^j)g(z^j)+h_j(z^j) Rg(z^j)| \geq \frac{c\mu(|z^j|)|Rg(z^j)|}{(1-|z^j|^2)^{\frac{n-p}{2}}}, $

所以 (3.6) 式成立.

(ⅲ) 下证 (3.7) 式成立.当$p=n$时, 对于$B$中满足$\lim\limits_{j\rightarrow+\infty}|z^j|=1$的任意序列$\{z^j\}$ $(j=1, 2, \cdots)$, 取

$ I_j(z)=\bigg(\log\frac{2}{1-|z^j|^2}\bigg)^{-\frac{1}{2}}\cdot\log\frac{2}{1-\langle z, z^j\rangle}. $

类似 (3.3) 式中的证明知$\|I_j\|_{D_n}\leq c, $且有$I_j (z^j)=(\log\frac{2}{1-|z^j|^2})^{\frac{1}{2}}, RI_j (z^j)=(\log\frac{2}{1-|z^j|^2})^{-\frac{1}{2}}\cdot\frac{|z^j|^2}{1-|z^j|^2}, $下面再证$\{I_{j}\}$$B$的任一紧子集上一致收敛于0.对任意$0 < r < 1$, 有

$ \begin{gathered} \mathop {\sup }\limits_{|z| \leqslant r} |{I_j}(z)| \leqslant \mathop {\sup }\limits_{|z| \leqslant r} {(\log \frac{2}{{1 - |{z^j}{|^2}}})^{ - \frac{1}{2}}} \cdot |\log \frac{2}{{1 - \langle z, {z^j}\rangle }}| \hfill \\ \leqslant c{(\log \frac{2}{{1 - |{z^j}{|^2}}})^{ - \frac{1}{2}}} \cdot \log \frac{2}{{1 - r}} \to 0, \;j \to \infty . \hfill \\ \end{gathered} $

所以$\{I_{j}\}$$B$的任一紧子集上一致收敛于0.由引理2.3, 有$\lim\limits_{j\rightarrow \infty}\|(P_{g}I_{j})\|_{Z_\mu}=0$, 即$\forall\varepsilon>0, \exists N>0$, 当$j>N$时, ($|z^j|\rightarrow1$) 有

$ c\varepsilon>\|(P_{g}I_{j})\|_{Z_\mu}\geq\mu(|z^j|)|RI_j(z^j)g(z^j)+I_j(z^j) Rg(z^j)|. $

因为$\lim\limits_{j\rightarrow+\infty}\frac{|z^j|}{(\log\frac{2}{1-|z^j|^2})^{\frac{1}{2}}}=0, $又由 (3.5) 式知

$ \mu(|z^j|)|Rg(z^j)| \bigg(\log\frac{2}{1-|z^j|^2}\bigg)^{\frac{1}{2}} \leq \|P_gI_j\|_{Z_\mu}+\frac{\mu(|z^j|)|g(z^j)||z^j|}{1-|z^j|^2}\cdot\frac{|z^j|}{(\log\frac{2}{1-|z^j|^2})^{\frac{1}{2}}}\leq c\varepsilon, $

所以 (3.7) 式成立.

(ⅳ) 最后证 (3.8) 式成立.当$p=n+2$时, 取

$ J_j(z)=\bigg(\log\frac{2}{1-|z^j|^2}\bigg)^{-\frac{1}{2}} \cdot\sum\limits_{k=1}^{+\infty}\frac{\langle z, z^j\rangle^k}{k^2}. $

类似 (3.4) 式中的证明知$\|J_j\|_{D_n+2}\leq c, $且有

$ \begin{gathered} {J_j}({z^j}) = {(\log \frac{2}{{1 - |{z^j}{|^2}}})^{ - \frac{1}{2}}} \cdot \sum\limits_{k = 1}^{ + \infty } {\frac{{|{z^j}{|^{2k}}}}{{{k^2}}}} = c{(\log \frac{2}{{1 - |{z^j}{|^2}}})^{ - \frac{1}{2}}}, \hfill \\ R{J_j}({z^j}) = {(\log \frac{2}{{1 - |{z^j}{|^2}}})^{ - \frac{1}{2}}} \cdot \sum\limits_{k = 1}^{ + \infty } {\frac{{|{z^j}{|^{2k}}}}{k}} = {(\log \frac{2}{{1 - |{z^j}{|^2}}})^{\frac{1}{2}}} \cdot (1 - \frac{{\log 2}}{{\log \frac{2}{{1 - |{z^j}{|^2}}}}}). \hfill \\ \end{gathered} $

下面再证$\{J_{j}\}$$B$的任一紧子集上一致收敛于0.对任意$0 < r < 1$, 有

$ \sup\limits_{|z|\leq r}|J_{j}(z)|\leq\sup\limits_{|z|\leq r} \bigg(\log\frac{2}{1-|z^j|^2}\bigg)^{-\frac{1}{2}}\cdot\sum\limits_{k=1}^{+\infty}\frac{|\langle z, z^j\rangle|^k}{k^2}\leq c\bigg(\log\frac{2}{1-|z^j|^2}\bigg)^{-\frac{1}{2}} \rightarrow0, \ j\rightarrow\infty. $

所以$\{J_{j}\}$$B$的任一紧子集上一致收敛于0.由引理2.3有$\lim\limits_{j\rightarrow \infty}\|(P_{g}J_{j})\|_{Z_\mu}=0$, 即$\forall\varepsilon>0, $ $\exists N>0$, 当$j>N$时, ($|z^j|\rightarrow1$) 有

$ c\varepsilon>\|(P_{g}J_{j})\|_{Z_\mu}\geq\mu(|z^j|)|RJ_j(z^j)g(z^j)+J_j(z^j) Rg(z^j)|. $

因为$\lim\limits_{j\rightarrow+\infty}(\log\frac{2}{1-|z^j|^2})^{-\frac{1}{2}}=0, $又由 (3.5) 式知

$ \begin{gathered} \mu (|{z^j}|)|g({z^j})|{(\log \frac{2}{{1 - |{z^j}{|^2}}})^{\frac{1}{2}}} \cdot (1 - \frac{{\log 2}}{{\log \frac{2}{{1 - |{z^j}{|^2}}}}}) \hfill \\ \leqslant {P_g}{J_j}{_{{Z_\mu }}} + c\mu (|{z^j}|)|Rg({z^j})| \cdot {(\log \frac{2}{{1 - |{z^j}{|^2}}})^{ - \frac{1}{2}}} \leqslant 2c\varepsilon, \hfill \\ \end{gathered} $

所以 (3.8) 式成立.证毕.

定理3.3  设$p\in {\Bbb R}$, $\mu$$[0, 1)$上的正规函数, 则下列条件等价:

(1) $P_g:D_p\rightarrow Z_{\mu, 0}$是紧算子;

(2) $P_g:D_p\rightarrow Z_{\mu, 0}$是有界算子;

(3) $P_g:D_p\rightarrow Z_\mu$是紧算子.

  只证$p < n$的情形. $(1)\Rightarrow (2)$显然成立.下面证明$(2)\Rightarrow (3)$.

任取$f\in D_p$, 有$P_g (f)\in {Z_{\mu, 0}}$, 根据定理3.2, 只需证明 (3.5) 和 (3.6) 式成立.假设 (3.5) 式不成立, 则存在点列$\{z^{j}\}\subset B$及常数$\varepsilon_{0}>0$, 满足$|z^{j}|\rightarrow1\ (j\rightarrow\infty)$

$ \frac{\mu(|z^j|)|g(z^j)|}{(1-|z^j|^2)^{\frac{n-p}{2}+1}}\geq\varepsilon_{0}. $ (3.9)

取定理3.2中证明 (3.5) 式的测试函数$f_j (z)$, 则易知$P_g (f_j)\in Z_{\mu, 0}$, 从而

$\lim\limits_{|z|\rightarrow1}\mu(|z|)|R^{(2)}(P_g(f_j))(z)|=0.$ (3.10)

但由 (3.9) 式有

$\mu(|z|)|R^{(2)}(P_g(f_j))|\geq \mu(|z^j|)|Rf_j(z^j)||g(z^j)|\geq c\frac{\mu(|z^j|)|g(z^j)|}{(1-|z^j|^2)^{\frac{n+2-p}{2}}}\geq\varepsilon_{0}$

与 (3.10) 式矛盾, 从而 (3.5) 式成立.取定理3.2中证明 (3.6) 式的测试函数$h_j (z)$, 类似可证明 (3.6) 式成立.

再证$(3)\Rightarrow (1)$.先证$(3)\Rightarrow (2)$.由定理3.2, 对任意的$f\in D_p$, 有

$ \begin{gathered} \mu (|z|)|{R^{(2)}}({P_g}(f))| = \mu (|z|)|Rf(z)g(z) + f(z)Rg(z)| \hfill \\ \leqslant cf{_{{D_p}}}\{ \frac{{\mu (|z|)|g(z)|}}{{{{(1- |z{|^2})}^{\frac{{n- p}}{2} + 1}}}} + \frac{{\mu (|z|)|Rg(z)|}}{{{{(1- |z{|^2})}^{\frac{{n - p}}{2}}}}}\} \hfill \\ \to 0\;(|z| \to 1). \hfill \\ \end{gathered} $ (3.11)

于是$P_g (f)\in Z_{\mu, 0}$, 因为$P_g$$D_p$空间到$Z_{\mu}$型空间的紧算子, 所以$P_g$$D_p$空间到$Z_{\mu}$型空间的有界算子, 从而$P_g$$D_p$空间到$Z_{\mu, 0}$型空间的有界算子.

再证$(3)\Rightarrow (1)$, 若条件 (3) 成立, 则条件 (2) 成立, 集合$P_g\{f\in D_p:\|f\|_{D_p}\leq1\}$$Z_{\mu, 0}$空间中是有界的, 且由定理3.2知 (3.5) 和 (3.6) 式都成立, 再结合 (3.11) 式知

$\lim\limits_{|z|\rightarrow1}\sup\limits_{\|f\|_{D_p}\leq1}\mu(|z|)|R^{(2)}(P_gf)(z)|=0.$

所以由引理2.4知$P_g$$D_p$空间到$Z_{\mu, 0}$型空间的紧算子.证毕.

参考文献
[1] Li S, Stević S. On An integral-type operator from ω-Bloch spaces to μ-Zygmund spaces. Appl Math Comput, 2010, 215(12): 4385–4391.
[2] Stević S. On An integral operator from the Zygmund spaces to Bloch type spaces on the unit ball. Glasgow Math J, 2009, 51(2): 275–287. DOI:10.1017/S0017089508004692
[3] Li S, Stević S. Integral-type operators from Bloch type spaces to Zygmund type spaces. Appl Math Comput, 2009, 215(2): 464–473.
[4] Stević S. On a new operator from H to the Bloch type spaces on the unit ball. Util Math, 2008, 77: 257–263.
[5] StevićS.On a new integral-type operator from the weighted Bergman space to the Bloch type spaces on the unit ball.Discrete Dyn Nat Soc, 2008, Art ID:154263
[6] Stević S, Ueki S. Integral-type operator acting between weighted-type spaces on the unit ball. Appl Math Comput, 2009, 215(7): 2464–2471.
[7] Stević S. On operator Pφg from the logarithmic Bloch-type spaces to the mixed-norm spaces on the unit ball. Appl Math Comput, 2010, 215(12): 4248–4255.
[8] Stević S.On an integral-type operator from Zygmund type spaces to the mixed-norm spaces on the unit ball.Abstr Appl Anal, 2010, Art ID:198608
[9] Stević S.On some integral-type operator between a general space and Bloch type spaces.Appl Math Comput, 2011, DOI:10.1016/j.amc.2011.07.077
[10] Hu Z J. Extended Cesáro operators on mixed norm space. Proc Amer Math Soc, 2003, 131(7): 2171–2179. DOI:10.1090/S0002-9939-02-06777-1
[11] 赵艳辉. 单位球上Dirichlet型空间到Zygmund型空间上的加权Cesáro算子. 高校应用数学学报, 2012, 27(1): 112–120.
Zhao Y H. Extended Cesáro operator from Dirichlet spaces to Zygmund type spaces on the unit ball. Applied Mathematics A Journal of Chinese Universities (Series A), 2012, 27(1): 112–120.
[12] 赵艳辉. 单位球上F (p, q, s) 空间到βμ空间上的加权Cesáro算子. 数学杂志, 2011, 31(4): 722–728.
Zhao Y H. Extended Cesáro operator from F (p, q, s) spaces to βμ spaces on the unit ball. J Math (Chinese Series), 2011, 31(4): 722–728.
[13] 刘永民, 于燕燕. 单位球上混合模空间到Zygmund型空间上的积分型算子. 数学学报, 2013, 56(3): 381–390.
Liu Y M, Yu Y Y. On an integral-type operator from the mixed-norm spaces to Zygmund type spaces on the unit ball. Acta Mathematica Sinica (Chinese Series), 2013, 56(3): 381–390.
[14] 马新光. Dirichlet空间到Zygmund空间的一个积分型算子. 哈尔滨商业大学学报 (自然科学版), 2012, 28(4): 469–471.
Ma X G. An integral type operator from Dirichlet space to Zygmund type spaces. Journal of Harbin University of Commerce (Natural Science Edition), 2012, 28(4): 469–471.
[15] Zhang X J. Extended Cesáro operator on Dirichlet type spaces and Bloch type spaces of Cn. Chin Ann Math, 2005, 26A(1): 139–150.
[16] 张学军. Cn中单位球上一些全纯函数空间的刻画. 数学学报, 2004, 47A(5): 993–1000.
Zhang X J. Characterizations of some Holomorphic function spaces in the unit ball of Cn. Acta Mathematica Sinica, 2004, 47A(5): 993–1000.
[17] Rudin W.Function Theory in the Unit Ball of Cn.New York:Springer-Verlag, 1980
[18] 张学军. 多复变中Dp和H及βp空间的一些关系. 吉首大学学报, 2001, 22(3): 24–29.
Zhang X J. Some relations between Dp space and H space in several comples variables. Journal of Jishou University (Natural Science Edition), 2001, 22(3): 24–29.
[19] 陆恒, 张太忠. 从α-Zygmund空间到β-Bloch空间的加权复合算子. 数学物理学报, 2015, 35A(4): 748–755.
Lu Lu H, Zhang T Z. Weighted composition operators from α-Zygmund Spaces into β-Bloch Spaces. Acta Mathematica Scientia, 2015, 35A(4): 748–755.