该文研究下列具阻尼的Boussinesq型方程初边值问题
解的长时间行为, 其中$\Omega$是${\Bbb R}^{N}$中具有光滑边界$\partial\Omega$的有界域, $\nu$是$\partial\Omega$的单位外法向量.
1872年, Bussinesq[1]建立了描述浅水波水面长波传播的方程
其中$u$表示流体自由表面的运动, 常系数$\alpha, \beta$依赖于流体的深度和水波的特征速度.当$\alpha<0$时, 方程(1.2)被称为``好"的Boussinesq方程. Bona和Sachs[2]研究了``好"的Boussinesq方程的初值问题的局部解的适定性. Sachs[3]研究了方程(1.2)的初值问题整体解的不存在性.当$\alpha>0$时, 方程(1.2)被称为``坏"的Boussinesq方程. 1982年, Deift等[4]将反散射理论应用于``坏"的Boussinesq方程的研究, 首次证明在初始函数呈负指数阶一致衰减的条件下, 下面的Boussinesq方程
的初值问题是可解的. 1985年Levine和Sleeman[5]进一步指出在一定条件下, 方程(1.3)的初边值问题不可能存在整体解. 1996年陈国旺和杨志坚[6]用不同的方法讨论了更一般的``坏"的Boussinesq方程的初边值问题的解的Blowup问题.
2008年, 宋长明等[18]证明了一维情况下具强阻尼``坏"的Boussinesq方程
存在一个整体光滑解$u\in C^{\infty}((0, T];H^{\infty}({\Bbb R}))\cap C([0, T];H^{1}({\Bbb R}))\cap C([0, T];H^{-1}({\Bbb R})), \forall T>0$, 其中$k, \alpha$是正实数, $\beta$是实数, $n$是大于2的整数.
2008年, 杨志坚和郭柏灵[7]证明了多维Boussinesq方程的初值问题
整体弱解的存在性, 其中:(ⅰ) $\mu>0, \sigma(u)\in C({\Bbb R})$, $|\sigma(s)|\leq b|s|^{p}, s\in {\Bbb R}$; (ⅱ)当增长阶$1<p<\frac{N+2}{(N-2)^{+}}$时, $0\leq\sigma(s)s\leq\beta\int_{0}^{s}\sigma(\tau){\rm d}\tau, $ $s\in {\Bbb R}, $ $\beta>0$.
Lai等[10]研究了更一般的具阻尼Boussinesq方程
的Cauchy问题的整体适定性, 给出一个长时间的渐近解.
整体吸引子是研究具有耗散项非线性发展方程的长时间行为的一个基本概念, 已有很多研究(参见文献[11-12]). Boussinesq型方程的整体吸引子问题受到广泛关注(参见文献[9, 21-23]).
2012年, 杨志坚[20]研究了具阻尼项的Boussinesq方程
解的长时间行为, 在$g(u)$非超临界情况下得到方程对应解算子半群整体吸引子及指数吸引子的存在性.
最近, 杨志坚[16]研究了在多维情况下弹性波导管模型方程的初边值问题
的解的长时间行为, 其中$\Omega$是${\Bbb R}^N$中具有光滑边界$\partial\Omega$的有界域, $\nu$是$\partial\Omega$的单位外法向量.陈国旺[24]、王书彬[25]分别讨论了在一维情况下, 上述方程的初边值问题和初值问题的整体解的存在性.
杨志坚[17]证明了问题
在相空间$E=V_{2}\times H$中整体吸引子的存在性并讨论了其Hausdorff维数和分形维数的有限性, 其中$\sigma(s)=s^{\frac{m-1}{2}}, s\geq 0, m\geq 1$.
受文献[13-17]的启发, 对于问题(1.1), 我们考虑下列问题:当$1< p\leq\frac{N+2}{(N-2)^{+}}, N\leq5 $时, 具弱阻尼项的Boussinesq型方程的解的长时间行为是否有类似的结果呢?它的整体吸引子是否具有有限的Hausdorff维数?这些问题都有待解决.
本文不同于文献[16-17], 作者进一步证明:
(ⅰ) 在非线性项$g(u)$限制条件弱的情况下, 具弱阻尼项的Boussinesq型方程初边值问题(1.1)解的存在性唯一性, 见定理2.1;
(ⅱ) 当增长阶$1< p\leq\frac{N+2}{(N-2)^{+}}, N\leq5 $时, 用半群分解理论证明问题(1.1)对应的半群$S(t)$在能量相空间$E=V_{2}\times H$中整体吸引子的存在性和吸引子Hausdorff维数的有限性, 见定理3.1和定理3.2;
(ⅲ) 对非线性项$g(u)$的抽象条件给出具体实例, 见注记3.1.
该文的安排如下:第一章引言; 第二章中讨论了问题(1.1)整体解的存在唯一性; 在第三章第一节中讨论了问题(1.1)对应的无穷维动力系统整体吸引子的存在性, 第二节中证明了整体吸引子有有限的Hausdorff维数, 对非线性项$g(u)$给出具体实例.
为叙述方便, 我们引入符号
其中$p\geq1, (\cdot, \cdot)$表示$H$的内积, 也表示两个对偶空间元素的对偶积, 为方便其见, 用$C$表示不同的正常数$, C(\cdot, \cdot)$表示依赖与参数的正常数.
易知${V_{2}}\hookrightarrow{H}={H{'}}\hookrightarrow{V'_{2}}.$定义算子$A:{V_{2}}\rightarrow{V'_{2}}, $
$D(A)=\{u\in H^{4}|u|_{\partial\Omega}=\Delta u |_{\partial\Omega}=0\}, \ \ \forall u \in D(A), Au=\Delta^{2}u.$则$A\in {\cal L}(V_{2}, V'_{2})$是自伴的严格正算子, 并且$A$是${V_{2}}\rightarrow{V'_{2}}$和${D(A)}\rightarrow{H}$的同构, 因此可以定义算子方幂$A^{s}(s\in {\Bbb R})$和空间$V_{s}=D(A^{\frac{s}{4}})(s\in {\Bbb R})$且在下面范数意义下, $V_{s}$组成Hilbert空间.
定义Hilbert空间$E_{s}={V_{s+2}}\times {V_{s}}$, 特别地, $E=E_{0}={V_{2}}\times{H}$.在$E_{s}$上装备范数
则问题(1.1)等价于下面算子方程的Cauchy问题
定理2.1(解的适定性) 假定
$(H_1)$ $g\in{C^{1}({\Bbb R})}, $
其中
其中$1< p<\frac{N+2}{(N-2)^{+}}, (a)^{+}=\max\{0, a\}, K_{i}>0, i=1, 2, 3$;
其中$G(s)=\int_{0}^{s}g(\tau){\rm d}\tau, 0<\rho<2$;
则问题(1.1)存在唯一的解$u, (u, u_{t})\in C_{b}({\Bbb R}^{+}, V_{2}\times H)$, 并且$\|(u, u_{t})\|_{E}\leq C_{1}{\rm e}^{-\delta t}+C_{0}, $其中$C_{1}=C(\|(u_{0}, u_{1})\|_{E}), C_{0}=C(\|f\|_{V_{-1}}).$同时, $N\leq 5$时, $(u, u_{t})$连续依赖$E$中的初值$(u_{0}, u_{1}).$
注2.1 (2.7)式蕴含$\forall \eta >0, \exists C_{\eta}>0, \tilde{C}_{\eta}>0, $使得
其中$G(s)=\int_{0}^{s}g(\tau){\rm d}\tau .$
引理2.1[12] 设$X, Y$为两个Banach空间, 且$X \hookrightarrow Y$.若$\varphi \in L^{\infty}((0, T);X)\bigcap C_{w}([0, T];$ $Y)$则$\varphi \in C_{w}([0, T];X).$
引理2.2 当$1< p< \frac{N+2}{(N-2)^{+}}(N\leq5), $ $\|g(u)-g(v)\|_{V_{1}}\leq C( R)\|u-v\|_{V_{2}}, $ $\forall u, v \in V_{2}, $ $\|u\|_{V_{2}}+\|v\|_{V_{2}}\leq R.$
定理2.1的证明 令$v=u_{t}+\varepsilon u, $则(2.4)式变为
对上式用$v$作$H$内积并作先验估计使用由Gronwall引理可得
其中$C_{1}=C_{1}(\|(u_{0}, u_{1})\|_{E}), C_{0}=C_{0}(\|f\|_{V_{-1}}), \delta =\epsilon \in (0, 1).$
用$A^{\frac{1}{2}}u_{t}+\epsilon A^{\frac{1}{2}}u$与(2.4)式中方程作$H$内积, 可得
显然
其中$C_{0}=C_{0}(\|f\|_{V_{-1}}).$
事实上, 当$1\leq p<\frac{N+2}{(N-2)^{+}}$时,
结合(2.11)-(2.16)式可得
由Gronwall引理可得
结合(2.18)式可知
故
下面设方程(1.1)的近似解$u^{n}$为
其中$Aw_{j}=\lambda_{j}w_{j}, T_{jn}(t)=(u^{n}, w_{j}), \lambda_{j}$是算子$A$所对应的特征值, $w_{j}$是算子$A$对应于特征值$\lambda_{j}$的特征元, 由此$\{{w_{j}}\}_{j=1}^{n}$构成$H$中的一个正交规范基, 并且同时是$V_{2}$中的正交基.
由Galerkin方法可知, $u^{n}(t)$满足
其中$j=1, \cdots, n, u_{0n}\rightarrow u_{0}$在$V_{2}$中, $u_{1n}\rightarrow u_{1}$在$H$中.并且(2.19)式对于$u^{n}(t)$也成立, 即对于任意的$t\in[0, T]$, 有
则可抽取子列仍记为$u^{n}$, 满足
对(2.22)式在$(0, t)$上积分可得
(1) 当$1\leq p\leq\frac{N}{(N-2)^{+}}$时,
(2) 当$\frac{N}{(N-2)^{+}}< p<\frac{N+2}{(N-2)^{+}}$时,
在(2.24)式中令$n\rightarrow +\infty$, 所得方程两边对$t$求导, 由$w_{j}$在$H$中稠密性可知
是问题(1.1)的解.
由$u_{tt}=f-A^{\frac{1}{2}}u-A^{\frac{1}{2}}u_{t}-Au-A^{\frac{1}{2}}g(u)\in L^{\infty}({\Bbb R}^{+}, V_{-2})$, 对$\forall T>0$,
由引理2.1可知$(u, u_{t})\in C_{w}([0, T], V_{2}\times H).$
$A^{\frac{1}{2}}u_{t}$与(2.4)式中方程作$H$内积式子在$(t_{0}, t)$上进行积分, 当$t\rightarrow t_{0}$时,
即当$t\rightarrow t_{0}$时,
现在我们证明$V_{2}\times H$中解对初值的连续依赖性.
设$u(t), v(t)$是方程(2.4)在$C_{b}({\Bbb R}^{+}, V_{2}\times H)$中的两个解, $(u_{0}, u_{1}), (v_{0}, v_{1})$分别是其对应的初值.令$w=u-v, $则$w$满足
对上面方程用$A^{\frac{1}{2}}w_{t}$做内积, 并利用引理2.2, 可得
由Gronwall不等式
定理2.1得证.
引理3.1 对于下面的方程
(1) 若$(u_{0}, u_{1})\in V_{2}\times H, h\in C_{b}({\Bbb R}^+, H), $则方程(3.1)有唯一解$u, (u, u_{t})\in C_{b}({\Bbb R}^+, V_{2}\times H)$, 并且下式成立
其中$C=C(\|(u_{0}, u_{1})\|_{E}), C_{0}=C_{0}(\|h\|_{ C_{b}({\Bbb R}^+, H)}).$
(2) 若$(u_{0}, u_{1})\in V_{s+2}\times V_{s}, h\in C_{b}({\Bbb R}^+, V_{s}), $则方程(3.1)有唯一解$u, (u, u_{t})\in C_{b}({\Bbb R}^+, $ $V_{s+2}\times V_{s})$, 并且下式成立
其中$C=C(\|(u_{0}, u_{1})\|_{E_{s}}), C_{0}=C_{0}(\|h\|_{ C_{b}({\Bbb R}^+, V_{s})}).$
(3) 若$(u, u_{t})\in C_{b}({\Bbb R}^+, V_{s+2}\times V_{s}), $ $s\in {\Bbb R}, $是方程(3.1)的解且$u_{0}=u_{1}=0, $ $h\in C_{b}({\Bbb R}^+;V_{\sigma }), $ $\sigma >s(\sigma>0), $则$(u, u_{t})\in C_{b}({\Bbb R}^+, $ $V_{\sigma+2}\times V_{\sigma})$.
证 (1) 类似于定理1的证明及结论, 易得解得存在唯一性及(3.1)式成立.
(2) 用$A^{\frac{s}{4}}$作用于方程(3.1), 并令$v=A^{\frac{s}{4}}u, \tilde{h}=A^{\frac{s}{4}}h$可得
当$(u_{0}, u_{1})\in V_{s+2}\times V_{s}, h\in C_{b}({\Bbb R}^+, V_{s})$时,
由(1)可知方程(3.4)有唯一解$v, (v, v_{t})\in C_{b}({\Bbb R}^+, V_{2}\times H)$, 即方程(3.1)有唯一解$u, (u, u_{t})\in C_{b}({\Bbb R}^+, V_{s+2}\times V_{s})$和(3.3)式成立.
(3) 用$A^{\frac{\sigma}{4}}$作用于方程(3.1), 并令$v=A^{\frac{\sigma}{4}}u, \tilde{h}=A^{\frac{\sigma}{4}}h$, 可得
当$h\in C_{b}({\Bbb R}^+, V_{\sigma})$时,
由(1)可知方程(3.6)有唯一解$v, (v, v_{t})\in C_{b}({\Bbb R}^+, V_{2}\times H)$, 即方程(3.1)有唯一解$u, (u, u_{t})\in C_{b}({\Bbb R}^+, V_{\sigma+2}\times V_{\sigma})$.
引理3.2 若$u$是问题(1.1)在定理1中的解, 且$g$满足$( H_{1})$中假设条件$(N\leq5)$, 则存在$\sigma:0<\sigma<1$, 使$g'(u)u_{t}\in C_{b}({\Bbb R}^+, V_{\sigma -2}).$
证 $\forall \psi \in V_{2-\sigma}$有
其中$N=5$时,
证毕.
引理3.3[12] 若度量空间$X$上的半群$S(t)$有一有界吸收集$B_{0}$, 且存在$X$中的一紧集$K$, 对于X中的任意有界集$B$, 使得当$t\rightarrow\infty$时,
则${\cal A}=\omega(B_{0})(B_{0}$的$\omega$极限集)是$S(t)$的整体吸引子.
引理3.4[17] 设$E=V_{2}\times H, E_{\sigma}=V_{\sigma+2}\times V_{\sigma}, 0<\sigma<1, K_{1}$是$E_{\sigma}$中的有界集, $K=\overline{K_{1}^{E}}$, 则K是$E_{\sigma}$中的有界集.
在定理1的假定下, 定义算子$S(t):E\rightarrow E, S(t)(u_{0}, u_{1})=(u(t), u_{t}(t))$, 其中$u$是问题(2.4)的解.则$N\leq 5$时, $S(t)$是$E$上的连续算子半群.
定理3.1(整体吸引子的存在性) 在定理1的假定下, $S(t)$在$E$存在一个连通的整体吸引子${\cal A}\subset K$, 其中$K$是$E_{\sigma}$中的有界集, $0<\sigma<1$.
证 由(2.19)式结论可知集合$B_{0}=\{(u, v)\in E\mid\|(u, v)\|^{2}_{E}\leq C_{0}\}$是算子半群$S(t)$在$E$中的吸收集, 对于$E$中任意的有界集$B$, 下式成立
将$S(t)$分解为$:S(t)=S_{1}(t)+S_{2}(t)$, 其中$S_{2}(t):V_{2}\times H\rightarrow V_{2}\times H, S_{2}(t)(u_{0}, u_{1})=(\bar{u}, \bar{u}_{t})$且满足
由引理3.1可知
$S_{1}(t)=S(t)-S_{2}(t), S_{1}(t):E\rightarrow E, S_{1}(t)(u_{0}, u_{1})=(\hat{u}, \hat{u}_{t})$且满足
其中$u\in C_{b}({\Bbb R}^+, V_{2}).$
将(3.14)式对$t$求导, 并令$w=\hat {u}_{t}, $可得
因为$f\in V_{\sigma -2}, A^{\frac{1}{2}}g(u_{0})\in V_{\sigma -2}$, 所以$w_{1}\in V_{\sigma -2}, g'(u)u_{t}\in C_{b}({\Bbb R}^+, V_{\sigma -2})$, 由引理3.1可知
又$(I+A^{\frac{1}{2}})\hat{u}=A^{-\frac{1}{2}}f-g(u)-A^{-\frac{1}{2}}\hat{u}_{tt}-\hat{u}_{t}\in C_{b}({\Bbb R}^+, V_{\sigma})$, 所以$\hat{u} \in C_{b}({\Bbb R}^+, V_{\sigma+2})$.
由此,
则$\bigcup\limits_{t\geq 0\\, \|(\hat{u}, \hat{u}_{t})\|_{E_{\sigma}}\leq R}(\hat{u}, \hat{u}_{t})$是$V_{\sigma+2}\times V_{\sigma}$中的有界集.又${V_{\sigma+2}\times V_{\sigma}}\hookrightarrow\hookrightarrow{V_{2}\times H}$, 由引理3.4知
是$E=V_{2}\times H$中的紧集.对任意有界集$B\subset E$, 由(3.11)式可得
因此, 由引理3.3可知, $S(t)$由一个整体吸引子${\cal A}=\omega(B_{0})$且
即${\cal A}\subset K$.
引理3.5[19] 设$X$为一Hilbert空间, $B\subset X$是一个紧集, $S:B\rightarrow X$是一个连续映射, 并且$SB=B$, 如果
(1) $S$在$B$上是一致可微的, 即存在线性算子$L(u)\in {\cal L}(X), $使得
(2) $\sup\limits_{u \in B}\|L(u)\|_{{\cal L}(X)}<\infty;$
(3) 对某一个$d>0, $成立$\bar{\omega_{\rm d}}\leq\sup\limits_{u \in B}\omega_{\rm d}(L(u))<1;$则$B$的Hausdorff维数不超过$d$, 即$\dim_{H}\{B, X\}\leq d<\infty.$
定理3.2 设定理1的假定成立, 并且存在$\sigma_{1}:0<\sigma_{1}<1, \gamma:0<\gamma\ll 1$使得
$(H_{4})$
$(H_{5})$
则上述吸引子${\cal A}$有有限的Hausdorff维数.
证 下面分三步证明.
第一步 变分方程解的存在性.
考虑方程(1.1)的变分方程
其中$(u, u_{t})=S(t)(u_{0}, u_{1}), (u_{0}, u_{1})\in{\cal A}\subset K$.即
用$A^{\frac{1}{2}}v_{t}$和(3.23)式中方程作内积
因为
可知
从而
利用经典Faedo-Galerkin的近似解方法得
是方程(3.23)的解.则由引理2.1.可知
对(3.23)式中方程用$A^{\frac{1}{2}}v_{t}$作内积, 可得
对上式在$(t_{0}, t)$上积分可得$t\rightarrow t_{0}$时, 有
因此
第二步 $S(t)$在${\cal A}$上的可微性.
令$\varphi_{0}=(u_{0}, u_{1}), \tilde{\varphi}_{0}=(u_{0}+\xi, u_{1}+\eta)\in {\cal A}, $以及
令$w=\tilde{u}-u$, 则$w$满足
且据(2.35)式可知
定义算子:${\cal L}(t, \varphi_{0}):E\rightarrow E, {\cal L}(t, \varphi_{0})(\xi, \eta)=(v(t), v_{t}(t)) $, 其中$\varphi_{0}\in {\cal A}\subset E_{\sigma}, $ $v(t)$是变分方程(2.35)的解, 下面只需证明
事实上, 令$\theta=w-v=\tilde{u}-u-v, \theta$满足
用$A^{\frac{1}{2}}\theta_{t}$作$H$内积
综合(3.36)-(3.38)式, 并利用Gronwall引理可得
由此可得S (t)在${\cal A}$上的可微性.
第三步 ${\cal A}$的Hausdorff维数.
引理3.6[8] 设$X$为一Hilbert空间, $q(t, \cdot), \gamma(t, \cdot)$是$X$中的两个双线性形式, $t\in[0, T], $ $0<T\leq\infty, \{L(t), 0\leq t<T\}$是$X$中一族线性连续算子, 并且$L(0)=I, $如果
(1) $\forall \eta_{0}\in X, q(t, L(t) \eta_{0}), \gamma(t, L(t) \eta_{0})$是绝对连续的, 且$\forall t\in [0, T)$, 满足
(2) 存在两个正实数$\alpha=\alpha(T), \beta=\beta(T)$, 使得$\forall t\in [0, T)$, 满足
(3) 存在$X$上非负自伴紧算子$K, $及$C_{0}>0, \sigma\in (0, 1]$使得对几乎处处的$t\in[0, T)$,
则
其中$\eta^{1}_{0}, \cdots, \eta^{m}_{0}$是$X$中任意元素, $\{k_{i}\}_{i=1}^{\infty}$是$K$特征值的非增序列.
下面通过引理3.6证明$\bar{\omega_{\rm d}}<1$.记$w=v_{t}+\epsilon v$, 则(3.23)式中方程可化为
对(3.44)式两边用$A^{\frac{1}{2}}w$作内积得
其中$\lambda_{1}$是$A$的第一个特征值, (3.48)式用到了$(H_{4})$.
将(3.47)和(3.48)式应用于(3.45)式, 可得
定义算子$K:E\rightarrow E, K\{u, v\}=A^{-\frac{\sigma_{1}}{2}}\{u, v\}, \forall u, v\in E.$令
则由(3.49)式可以得到
因为$K\in {\cal L}(E)$且$K:E=V_{2}\times H\rightarrow V_{2+2\sigma_{1}}\times V_{2\sigma_{1}}\hookrightarrow\hookrightarrow V_{2}\times H$, 故K是紧算子.
对(3.45)式两边同时乘${\rm e}^{kt}$, 得
其中$\tilde{v}={\rm e}^{\frac{k}{2}t}v, \tilde{v}_{t}=\frac{k}{2}{\rm e}^{\frac{k}{2}t}v+{\rm e}^{\frac{k}{2}t}v_{t}.$当$\epsilon, k$适当小时,
即存在$ \alpha=\alpha(T)>0, \beta=\beta(T)>0, $使得
令
定义算子$L_{1}(t, \varphi_{0}):E\rightarrow E, L_{1}(t, \varphi_{0})\psi_{0}=\psi(t).$其中
则(3.51)式可写成
由引理3.6得
并且
故存在$ m_{0}$, 当$m\geq m_{0}$时,
特别地,
由引理3.6可知, $\dim_{H}\{{\cal A}, E\}\leq m_{0}<\infty.$定理3.2得证.
注3.1 设$g(s)=a|s|^{p-1}s$, 其中$a\in {\Bbb R}^+, 2\leq p<\frac{N+2}{(N-2)^{+}}$.易验证$g(s)$满足条件$(H_{1})-(H_{4})$.从而$g(s)=a|s|^{p-1}s$使得定理1-3中所有结论成立.