数学物理学报  2016, Vol. 36 Issue (6): 1186-1195   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
耿金波
杨珍珍
赖宁安
半无界区域上半线性薛定谔方程初边值问题解的破裂及其生命跨度的估计
耿金波1, 杨珍珍1, 赖宁安2     
1. 浙江师范大学数学系 浙江金华 321004 ;
2. 丽水学院数学系 浙江丽水 323000
摘要:该文主要研究了半无界区域上一维半线性薛定谔方程初边值问题解的破裂及其生命跨度估计.当非线性项指数p满足1 < p≤2时,证明了解在有限时间内破裂;当1 < p < 2时,进一步得到了解的生命跨度上界估计.证明的过程主要运用了试探函数方法.
关键词半线性薛定谔方程     破裂     生命跨度    
Blow up and Lifespan Estimates for Initial Boundary Value Problem of Semilinear Schrödinger Equations on Half-Life
Geng Jinbo1, Yang Zhenzhen1, Lai Ning-An2     
1. Department of Mathematics, Zhejiang Normal University, Zhejiang Jinhua 321004 ;
2. Department of Mathematics, Lishui University, Zhejiang Lishui 323000
Abstract: In this paper, we consider the initial boundary value problem of semilinear Schrödinger equation on half-line. Blow up result will be established, assuming the power of the nonlinear term satisfying 1 < p≤2. Furthermore, we obtain the upper bound of the lifespan in the case 1 < p < 2. The proof is based on a contradiction argument, by constructing a special test function.
Key words: Semilinear Schrödinger equation     Blow up     Lifespan    
1 引言

考虑如下一维半线性薛定谔方程初边值问题

$ \begin{equation}\label{eq:a1} \left\{\begin{array}{ll} {\rm i}u _{t}+u_{xx} =\lambda |u|^{p}, \quad &x>0, t>0, \\ u(0, x)= \varepsilon f(x), \quad\quad & x>0, \\ u(t, 0)=0, & t>0, \end{array}\right. \end{equation} $ (1.1)

其中$\lambda=\lambda_{1}+{\rm i}\lambda_{2}\in{\Bbb C}\setminus\{0\}$, 并且$\lambda_{1}>0.$假设初值$f(x)=f_{1}(x)+{\rm i}f_{2}(x)$满足

$ \begin{equation}\label{eq:a2} f_{2}(x)<0, ~~~~-\int_{0<x\leq1}xf_{2}(x){\rm d}x\geq C, \end{equation} $ (1.2)

这里和后面的介绍中, $C$指的是一个正常数, 但不是固定不变的.

方程(1.1)在Sobolev空间$H^{s}(s\geq0)$中局部解的存在性, 可参见文献[1, 16]及其中相关的参考文献.如果想要研究解的大时间行为:解是整体存在还是在有限时间内破裂, 那么非线性项的指数$p$起着重要的作用.首先介绍两个重要的指数:一个是$p_{c}(n)=1+\frac{2}{n}$, 它是由Germain等[4]引入的; 另一个是$p_{0}(n)$, 它是方程$(n-1)p^{2}-(n+1)p-2=0$的正根, 是由Strauss[13]引入的, 文中作者证明了当$p>p_{0}(n+1)$时, ${\Bbb R}^n$中的小初值Cauchy问题(1.1)存在整体解.指数$p_c(n)=1+\frac{2}{n}$被称作Fujita指数, 是小初值半线性热传导方程和耗散半线性波动方程Cauchy问题的临界指标, 相关结果见文献[2, 10, 15].更多关于小初值半线性薛定谔方程解在有限时间内破裂的结果, 见文献[11-12].

Ikeda和Wakasugi[6]研究了方程(1.1)在${\Bbb R}^n$中的Cauchy问题, 当$p$满足$1<p\leq p_{c}(n)$时, 选择合适的初值, 得到了解在有限时间内破裂的结果, 证明过程运用了反证法, 该方法由Zhang[17-18]引入.此外, 运用Kuiper[9]中的试探函数方法, Ikeda[5]证明了$1<p<1+\frac 2n$时的生命跨度上界满足如下形式

$ \begin{equation}\label{2aa} T_{\varepsilon}\leq C\varepsilon^{\frac{1}{\alpha}}, \end{equation} $ (1.3)

其中$\alpha=\frac k2-\frac{1}{p-1}$$n<k<\frac {2}{p-1}$.最近, Ikeda和Inui[7]证明了当$1<p<1+\frac4n$时小初值$L^2$$H^1$解将在有限时间内破裂,并进一步给出了解的生命跨度上界估计.

本论文研究一维空间中半无界区域上的初边值问题(1.1), 当$1<p\leq2$时将证明解在有限时间内破裂; 进一步, 当$1<p<2$时, 将建立解的生命跨度上界估计.证明的主要方法是反正法和试探函数法.与文献[5-6, 9, 14]相比, 我们借鉴了文献[3]中的想法, 引入黎曼-刘维尔分数阶导数来构造新的试探函数.

注1.1 我们猜测初边值问题(1.1)存在临界指标$p=2$, 该指标相应于二维Cauchy问题的临界指标.初边值问题(1.1)在$p>2$时的整体存在性是一个非常有趣的问题.

注1.2 对于临界情性$p=2$, 本文中的方法无法建立其生命跨度上界估计, 这也是我们接下来要研究的问题.

本文的主要结论为如下两个定理:

定理1.1 当$1<p\leq 2$时, 假设初始值满足条件(1.2), 则初边值问题(1.1)的解将在有限时间内破裂.

定理1.2 当$1<p\leq 2$时, 假设初始值满足条件(1.2), 则存在$\varepsilon_{0}>0$$C=C(p, \lambda)$, 使得方初边值问题(1.1)解的上生命跨度上界估计满足

$ \begin{equation} T(\varepsilon)\leq C\varepsilon^{\frac{p-1}{p-2}}, \end{equation} $ (1.4)

其中$\varepsilon\in(0, \varepsilon_{0})$.

正文内容安排如下:在第二部分介绍黎曼-刘维尔分数阶导数并构造试探函数.在第三部分证明定理1.1.在第四部分证明定理1.2.

2 试探函数

在这部分, 我们将引入黎曼-刘维尔分数阶导数来构造一个试探函数.下文中$AC[0, T]$指的是定义在$[0, T]$上绝对连续的函数, 其中$0<T<\infty$, 则对任意的$g\in AC[0, T]$, 其$\alpha$阶的右手黎曼-刘维尔分数阶导数定义如下

$ \begin{equation}\label{eq:a3} D_{t|T}^{\alpha}g(t)=-\frac{1}{\Gamma(1-\alpha)}\frac{\rm d}{{\rm d}t}\int_t^T(s-t)^{-\alpha}g(s){\rm d}s, ~~~t\in [0, T], \end{equation} $ (2.1)

其中$\alpha\in (0, 1)$$\Gamma$是欧拉函数.关于黎曼-刘维尔分数阶导数的详细定义, 见文献[8].

引理2.1[8] 令$g\in AC^{N+1}[0, T]:=\{g: [0, T]\rightarrow {\Bbb R}$, $ \partial_t^Ng\in AC[0, T]\}$, 则对任意指数$N\geq 0$, 有

$ \begin{equation}\label{eq:a4} (-1)^N\partial_t^N\big(D_{t|T}^{\alpha}g(t)\big)=D_{t|T}^{N+\alpha}g(t), \end{equation} $ (2.2)

其中$\partial_t^N$指的是对$t$$N$阶偏导.

引理2.2 令$h(t)=\big(1-\frac tT\big)_{+}^{\sigma}$其中$t\geq 0$, $T>0$$\sigma\gg 1$, 则有

$ \begin{equation}\label{eq:a5} D_{t|T}^{\alpha}h(t)=\frac{(1-\alpha+\sigma)\Gamma(\sigma+1)}{\Gamma(2-\alpha+\sigma)}T^{-\sigma}(T-t)_{+}^{\sigma-\alpha} =CT^{-\sigma}(T-t)_{+}^{\sigma-\alpha}, \end{equation} $ (2.3)
$ \begin{eqnarray}\label{eq:a6} D_{t|T}^{\alpha+1}h(t)&=&\frac{(1-\alpha+\sigma)(\sigma-\alpha)\Gamma(\sigma+1)}{\Gamma(2-\alpha+\sigma)} T^{-\sigma}(T-t)_{+}^{\sigma-\alpha-1}\\ &=&CT^{-\sigma}(T-t)_{+}^{\sigma-\alpha-1}, \end{eqnarray} $ (2.4)

因此进一步可以得到

$ \begin{equation}\label{eq:a7} \big(D_{t|T}^{\alpha}h\big)(T)=0, ~~\big(D_{t|T}^{\alpha+1}h\big)(T)=0, \end{equation} $ (2.5)
$ \begin{equation}\label{eq:a8} \big(D_{t|T}^{\alpha}h\big)(0)=CT^{-\alpha}, ~~\big(D_{t|T}^{\alpha+1}h\big)(0)=CT^{-\alpha-1}. \end{equation} $ (2.6)

引理$2.2$的证明可以通过变量替换得到, 具体可见文献[3].

$\Phi(x)$是一个光滑、单调递减的函数, 且满足以下条件

$ \Phi \left( x \right) = \left\{ {\begin{array}{*{20}{l}} {1,}&{{\text{0}} \leqslant {\text{x}} \leqslant {\text{1}},} \\ {0,}&{{\text{x}} \geqslant {\text{2}}.} \end{array}} \right. $

$\phi_{1}(x)=\Phi(\frac{x}{B})$, $\phi_{2}(t)=(1-\frac{t}{T})_{+}$, 我们构造如下形式的试探函数

$ \begin{eqnarray}\label{8} \phi(t, x)=x\phi_{1}^{l}(x)D^{\alpha}_{t\mid T}(\phi_{2}^{k}(t)) =Cx\phi_{1}^{l}(x)T^{-\alpha} (1-\frac{t}{T})_{+}^{k-\alpha}, ~~~~~l, k\gg1. \end{eqnarray} $ (2.7)

则由引理$2.2$可以得到

$ \begin{eqnarray}\label{9} \phi_{t}(t, x)=-x\phi_{1}^{l}(x)D^{\alpha+1}_{t\mid T}(\phi_{2}^{k}(t)) =-Cx\phi_{1}^{l}(x)T^{-\alpha-1} (1-\frac{t}{T})_{+}^{k-\alpha-1}, \end{eqnarray} $ (2.8)
$ \phi(T, x)=0, \phi(t, 0)=0, \phi_{t}(T, x)=0, $
$ \phi(0, x)=Cx\phi_{1}^{l}(x)T^{-\alpha}, \phi_{t}(0, x)=-Cx\phi_{1}^{l}(x)T^{-\alpha-1}. $
3 定理1.1的证明

方程(1.1)两边同时乘以$\phi(t, x)$, 并在$[0, T]\times[0, \infty)$上积分, 得

$ \begin{eqnarray}\label{10} &&\int_{0}^{T}\int_{0}^{+\infty}\lambda |u|^{p}\phi(t, x){\rm d}x{\rm d}t\\ &=&\int_{0}^{T}\int_{0}^{+\infty}({\rm i}u_{t}+u_{xx})\phi(t, x){\rm d}x{\rm d}t\\ &=&\int_{0}^{T}\int_{0}^{+\infty}\Big(({\rm i}u\phi )_{t}-u({\rm i}\phi_{t})\Big){\rm d}x{\rm d}t+\int_{0}^{T}\int_{0}^{+\infty}\Big((u_{x}\phi)_{x}-u_{x}\phi_{x}\Big){\rm d}x{\rm d}t\\ & =&-\int_{0}^{+\infty}{\rm i}u(0, x)\phi(0, x){\rm d}x-\int_{0}^{T}\int_{0}^{+\infty}u({\rm i}\phi_{t}){\rm d}x{\rm d}t\\ &&+\int_{0}^{T}\int_{0}^{+\infty} u\phi_{xx}{\rm d}x{\rm d}t. \end{eqnarray} $ (3.1)

式(3.1)两边取实部, 得到

$ \begin{eqnarray}\label{11} &&\lambda_{1}\int_{0}^{T}\int_{0}^{+\infty} |u|^{p}\phi(t, x){\rm d}x{\rm d}t- \varepsilon\int_{0}^{+\infty}f_{2}(x)\phi(0, x){\rm d}x\\ &=&\int_{0}^{T}\int_{0}^{+\infty} {\rm Re} u(-{\rm i}\phi_{t}+\phi_{xx}){\rm d}x{\rm d}t\\ &\leq& \int_{0}^{T}\int_{0}^{+\infty}|u|(|\phi_{t}|+|\phi_{xx}|){\rm d}x{\rm d}t. \end{eqnarray} $ (3.2)

$ \begin{eqnarray}\label{12} I&=&\lambda_{1}\int_{0}^{T}\int_{0}^{+\infty} |u|^{p}\phi(t, x){\rm d}x{\rm d}t\\ &=&C\lambda_{1}\int_{0}^{T}\int_{0}^{+\infty} |u|^{p}x\phi_{1}^{l}(x)T^{-\alpha} (1-\frac{t}{T})_{+}^{k-\alpha}{\rm d}x{\rm d}t, \\ J&=&-\varepsilon\int_{0}^{+\infty}f_{2}(x)\phi(0, x){\rm d}x, \\ K_{1}&=&\int_{0}^{T}\int_{0}^{+\infty}|u||\phi_{t}|{\rm d}x{\rm d}t, \\ K_{2}&=&\int_{0}^{T}\int_{0}^{+\infty}|u||\phi_{xx}|{\rm d}x{\rm d}t, \end{eqnarray} $ (3.3)

则(3.2)式可以简写为

$ \begin{equation}\label{13} I+J\leq K_{1}+K_{2}. \end{equation} $ (3.4)

由(1.2)和(2.8)式易得

$ \begin{eqnarray}\label{14} J&=&-\varepsilon\int_{0}^{+\infty}f_{2}(x)\phi(0, x){\rm d}x\\ &=&-C\varepsilon T^{-\alpha}\int_{0}^{+\infty}xf_{2}(x)\phi^{l}_{1}(x){\rm d}x\\ &\geq&-C\varepsilon T^{-\alpha}\int_{x\leq1}xf_{2}(x){\rm d}x\\ &\geq& C\varepsilon T^{-\alpha}. \end{eqnarray} $ (3.5)

结合(3.4)和(3.5)式可得

$ \begin{equation}\label{15} I\leq K_{1}+K_{2}. \end{equation} $ (3.6)

接下来我们将对$K_{1}$$K_{2}$分别进行估计.对于$K_{1}$, 注意到$l, k\gg1$, 再结合(2.8)式、Hölder不等式和Young不等式, 可得

$ \begin{eqnarray}\label{16} K_{1}&=&\int_{0}^{T}\int_{0}^{+\infty}|u||\phi_{t}|{\rm d}x{\rm d}t\\ &=&C\int_{0}^{T}\int_{0}^{+\infty}x|u|\phi_{1}^{l}T^{-\alpha-1} (1-\frac{t}{T})_{+}^{k-\alpha-1}{\rm d}x{\rm d}t\\ &=&C\int_{0}^{T}\int_{0}^{+\infty}|u|x^{\frac{1}{p}}\phi_{1}^{\frac{l}{p}}T^{-\frac{\alpha}{p}} (1-\frac{t}{T})_{+}^{\frac{k-\alpha}{p}}x^{1-\frac{1}{p}}\phi_{1}^{l-\frac{l}{p}}\\ &&\times T^{-\alpha-1+\frac{\alpha}{p}} (1-\frac{t}{T})_{+}^{k-\alpha-1-\frac{k-\alpha}{p}}{\rm d}x{\rm d}t\\ & \leq & CI^{\frac{1}{p}}\Big(\int_{0}^{T}\int_{0}^{+\infty}x\phi_{1}^{l}T^{-\frac{(\alpha+1)p}{p-1}+\frac{\alpha}{p-1}} (1-\frac{t}{T})_{+}^{k-\alpha-\frac{p}{p-1}}{\rm d}x{\rm d}t\Big)^{\frac{p-1}{p}}\\ & \leq &\frac{1}{3}I+C\int_{0}^{T}\int_{0}^{+\infty}x\phi_{1}^{l}T^{-\frac{(\alpha+1)p}{p-1}+\frac{\alpha}{p-1}} (1-\frac{t}{T})_{+}^{k-\alpha-\frac{p}{p-1}}{\rm d}x{\rm d}t \\ &\triangleq &\frac{1}{3}I+K_{11}. \end{eqnarray} $ (3.7)

$1<p<2$时, 引入如下变量替换: $s=\frac{t}{T}, y=\frac{x}{T^{\frac{1}{2}}}, B=T^{\frac{1}{2}}$, 则对$K_{11}$有如下估计

$ \begin{eqnarray}\label{17} K_{11}&=&C\int_{0}^{T}\int_{0}^{+\infty}x\phi_{1}^{l}T^{-\frac{(\alpha+1)p}{p-1}+\frac{\alpha}{p-1}} (1-\frac{t}{T})_{+}^{k-\alpha-\frac{p}{p-1}}{\rm d}x{\rm d}t\\ &=&CT^{-\alpha-\frac{p}{p-1}}\int_{0}^{T}\int_{0}^{+\infty}x\phi_{1}^{l} (1-\frac{t}{T})_{+}^{k-\alpha-\frac{p}{p-1}}{\rm d}x{\rm d}t\\ &\leq& CT^{-\alpha-\frac{p}{p-1}}\int_{0}^{1}\int_{0}^{2}T^{\frac{1}{2}}y (1-s)_{+}^{k-\alpha-\frac{p}{p-1}}T^{\frac{1}{2}+1}{\rm d}y{\rm d}s\\ &\leq &CT^{-\alpha-\frac{p}{p-1}+2}, \end{eqnarray} $ (3.8)

结合(3.7)式, 得

$ \begin{equation}\label{18} K_{1}\leq \frac{1}{3}I+CT^{-\alpha-\frac{p}{p-1}+2}. \end{equation} $ (3.9)

根据试探函数$\phi(t, x)$的构造易得

$ \begin{eqnarray}\label{19} \phi_{x}(t, x)&=&CT^{-\alpha}(1-\frac{t}{T})_{+}^{k-\alpha}\Big( \phi_{1}^{l}+lx\phi_{1}^{l-1}\phi_{1x}\Big), \\ \phi_{xx}(t, x)&=&CT^{-\alpha}(1-\frac{t}{T})_{+}^{k-\alpha}\Big( 2l\phi_{1}^{l-1}\phi_{1x} +l(l-1)x\phi_{1}^{l-2}(\phi_{1x})^{2} +lx\phi_{1}^{l-1}\phi_{1xx}\Big), \end{eqnarray} $ (3.10)

利用和估计$K_1$相同的办法, 我们可以得到

$ \begin{eqnarray}\label{20} K_{2}&=&\int_{0}^{T}\int_{0}^{+\infty}|u||\phi_{xx}|{\rm d}x{\rm d}t\\ &\leq &CI^{\frac{1}{p}}\Big(\int_{0}^{T}\int_{0}^{+\infty}T^{-\alpha}(1-\frac{t}{T})_{+}^{k-\alpha} x^{-\frac{1}{p-1}}\phi_{1}^{l-\frac{2p}{p-1}}\\ &&\times(\phi_{1x}+x(\phi_{1x})^{2}+x\phi_{1xx})^{\frac{p}{p-1}}{\rm d}x{\rm d}t\Big)^{\frac{p-1}{p}}\\ &\leq &\frac{1}{3}I+C\int_{0}^{T}\int_{0}^{+\infty}T^{-\alpha}(1-\frac{t}{T})_{+}^{k-\alpha} x^{-\frac{1}{p-1}}\phi_{1}^{l-\frac{2p}{p-1}}\\ &&\times(\phi_{1x}+x(\phi_{1x})^{2}+x\phi_{1xx})^{\frac{p}{p-1}}{\rm d}x{\rm d}t\\ &\triangleq&\frac{1}{3}I+K_{21}. \end{eqnarray} $ (3.11)

再次利用(3.8)式中相同的变量替换, 得

$ \begin{eqnarray}\label{21} K_{21}&=&C\int_{0}^{T}\int_{0}^{+\infty}T^{-\alpha}(1-\frac{t}{T})_{+}^{k-\alpha} x^{-\frac{1}{p-1}}\phi_{1}^{l-\frac{2p}{p-1}}\\ &&\times(\phi_{1x}+x(\phi_{1x})^{2}+x\phi_{1xx})^{\frac{p}{p-1}}{\rm d}x{\rm d}t\\ &\leq &CT^{-\alpha}\int_{0}^{1}\int_{1}^{2}(1-s)_{+}^{k-\alpha} (T^{\frac{1}{2}}y)^{-\frac{1}{p-1}}\\ &&\times(T^{-\frac{p}{2(p-1)}}+T^{-\frac{p}{2(p-1)}}y^{\frac{p}{p-1}}) T^{\frac{1}{2}+1}{\rm d}y{\rm d}s\\ &\leq &CT^{-\alpha-\frac{p+1}{2(p-1)}+\frac{3}{2}}, \end{eqnarray} $ (3.12)

联立(3.11)式, 得到

$ \begin{equation}\label{22} K_{2}\leq \frac{1}{3}I+CT^{-\alpha-\frac{p+1}{2(p-1)}+\frac{3}{2}}. \end{equation} $ (3.13)

因此, 结合(3.6), (3.9)和(3.13)式, 得到

$ \begin{eqnarray}\label{23} CT^{-\alpha}\int_{0}^{T}\int_{0}^{+\infty} |u|^{p}x\phi_{1}^{l}(1-\frac{t}{T})_{+}^{k-\alpha}{\rm d}x{\rm d}t \leq C(T^{-\alpha-\frac{p}{p-1}+2}+T^{-\alpha-\frac{p+1}{2(p-1)}+\frac{3}{2}}). \end{eqnarray} $ (3.14)

$T\rightarrow +\infty$, 则当$1<p<2$时有

$ \begin{equation}\label{24} \int_{0}^{+\infty}\int_{0}^{+\infty}|u|^{p}x{\rm d}x{\rm d}t=0, \end{equation} $ (3.15)

由此可得对于任意的$t, x>0$, 有$u(t, x)=0$成立, 这样我们就得到了一个矛盾.于是, 解将在有限时间内破裂.

$p=2$时, 引入如下变量替换

$ B=M^{-\frac{1}{2}}T^{\frac{1}{2}}, \quad y=M^{\frac{1}{2}}T^{-\frac{1}{2}}x=B^{-1}x, \quad s=\frac{t}{T}, $

其中$1\ll M<T$且当$T\rightarrow \infty$时就不会同时有$M\rightarrow \infty$.则可以估计$K_{11}$如下

$ \begin{eqnarray}\label{25} K_{11}&=&CT^{-\alpha-\frac{p}{p-1}}\int_{0}^{T}\int_{0}^{+\infty}x\phi_{1}^{l} (1-\frac{t}{T})_{+}^{k-\alpha-\frac{p}{p-1}}{\rm d}x{\rm d}t\\ &\leq &CT^{-\alpha-\frac{p}{p-1}}\int_{0}^{1}\int_{0}^{2}M^{-\frac{1}{2}}T^{\frac{1}{2}}y (1-s)_{+}^{k-\alpha-\frac{p}{p-1}}M^{-\frac{1}{2}}T^{\frac{1}{2}+1}{\rm d}y{\rm d}s\\ &\leq &CT^{-\alpha-\frac{p}{p-1}+2}M^{-1}\int_{0}^{1}\int_{0}^{2}y(1-s)_{+}^{k-\alpha-\frac{p}{p-1}}{\rm d}y{\rm d}s\\ &\leq& CT^{-\alpha}M^{-1}, \end{eqnarray} $ (3.16)

估计$K_{21}$如下

$ \begin{eqnarray}\label{26} K_{21}&=&CT^{-\alpha}\int_{0}^{T}\int_{0}^{+\infty}(1-\frac{t}{T})_{+}^{k-\alpha} x^{-\frac{1}{p-1}}\phi_{1}^{l-\frac{2p}{p-1}}\\ &&\times(\phi_{1x}+x(\phi_{1x})^{2}+x\phi_{1xx})^{\frac{p}{p-1}}{\rm d}x{\rm d}t\\ &\leq &CT^{-\alpha}\int_{0}^{1}\int_{1}^{2}(1-s)_{+}^{k-\alpha} M^{\frac{1}{2(p-1)}}T^{-\frac{1}{2(p-1)}}y^{-\frac{1}{p-1}}\\ &&\times M^{\frac{p}{2(p-1)}}T^{-\frac{p}{2(p-1)}}(1+y^{\frac{p}{p-1}})M^{-\frac{1}{2}} T^{\frac{1}{2}+1}{\rm d}y{\rm d}s\\ &\leq &CT^{-\alpha-\frac{p+1}{2(p-1)}+\frac{3}{2}}M^{\frac{p+1}{2(p-1)}-\frac{1}{2}}\\ &&\times\int_{0}^{1}\int_{0}^{2}(1-s)_{+}^{k-\alpha}y^{-\frac{1}{p-1}}(1+y^{\frac{p}{p-1}}){\rm d}y{\rm d}s\\ &\leq &CT^{-\alpha}M, \end{eqnarray} $ (3.17)

上述两式结合(3.6)式可得

$ CT^{-\alpha}\int_{0}^{T}\int_{0}^{+\infty} |u|^{p}x\phi_{1}^{l}(1-\frac{t}{T})_{+}^{k-\alpha}{\rm d}x{\rm d}t\leq CT^{-\alpha}M^{-1}+CT^{-\alpha}M, $

这等价于

$ \begin{equation}\label{27} \int_{0}^{T}\int_{0}^{+\infty} |u|^{p}x\phi_{1}^{l}(1-\frac{t}{T})_{+}^{k-\alpha}{\rm d}x{\rm d}t\leq CM^{-1}+CM. \end{equation} $ (3.18)

上式中令$T\rightarrow \infty$

$ \begin{equation}\label{28} \int_{0}^{+\infty}\int_{0}^{+\infty}|u|^{p}x{\rm d}x{\rm d}t\leq C, \end{equation} $ (3.19)

这意味着

$ \begin{equation}\label{29} \int_{0}^{T}\int_{M^{-\frac{1}{2}}T^{\frac{1}{2}}}^{2M^{-\frac{1}{2}}T^{\frac{1}{2}}} |u|^{p}x\phi_{1}^{l}(1-\frac{t}{T})_{+}^{k}{\rm d}x{\rm d}t \rightarrow 0, ~~~~T \rightarrow +\infty. \end{equation} $ (3.20)

另外通过计算我们有

$ \begin{equation}\label{30} (x\phi_{1}^{l})_{xx}=l\phi_{1}^{l-1}\phi_{1x}+xl(l-1)\phi_{1}^{l-2}(\phi_{1x})^{2} +xl\phi_{1}^{l-1}\phi_{1xx}, \end{equation} $ (3.21)

则可对$K_{2}$进行如下估计

$ \begin{eqnarray}\label{31} K_{2}&=&\int_{0}^{T}\int_{0}^{+\infty}|u||\phi_{xx}|{\rm d}x{\rm d}t\\ &=&C\int_{0}^{T}\int_{0}^{+\infty}|u|x^{\frac{1}{p}}\phi_{1}^{\frac{l}{p}} (1-\frac{t}{T})_{+}^{\frac{k}{p}}x^{-\frac{1}{p}}\phi_{1}^{-\frac{l}{p}}\\ &&\times(1-\frac{t}{T})_{+}^{-\frac{k}{p}}T^{-\alpha}(1-\frac{t}{T})_{+}^{k-\alpha} (x\phi_{1}^{l})_{xx}{\rm d}x{\rm d}t\\ &\leq &CT^{-\alpha}\Big(\int_{0}^{T}\int_{B}^{2B}|u|^{p}x\phi_{1}^{l} (1-\frac{t}{T})_{+}^{k}{\rm d}x{\rm d}t\Big)^{\frac{1}{p}}\\ &&\times\Big(\int_{0}^{1}\int_{1}^{2}T^{-\frac{1}{2(p-1)}}M^{\frac{1}{2(p-1)}}\\ &&\times y^{-\frac{1}{p-1}} (1-s)_{+}^{k-\frac{\alpha p}{p-1}}T^{-\frac{p}{2(p-1)}}M^{\frac{p}{2(p-1)}}\\ &&\times(1+y^{\frac{p}{p-1}}) (T^{\frac{3}{2}}M^{-\frac{1}{2}})^{\frac{p}{p-1}}{\rm d}y{\rm d}s\Big)^{\frac{p-1}{p}}\\ &\leq &CT^{-\alpha}M^{\frac{1}{2}} \Big(\int_{0}^{T}\int_{T^{\frac{1}{2}}M^{-\frac{1}{2}}}^{2T^{\frac{1}{2}}M^{-\frac{1}{2}}} |u|^{p}x\phi_{1}^{l} (1-\frac{t}{T})_{+}^{k}{\rm d}x{\rm d}t\Big)^{\frac{1}{p}}. \end{eqnarray} $ (3.22)

联立(3.6), (3.7), (3.16)和(3.22)式可得

$ \begin{eqnarray*} &&T^{-\alpha}\int_{0}^{T}\int_{0}^{+\infty} |u|^{p}x\phi_{1}^{l}(1-\frac{t}{T})_{+}^{k-\alpha}{\rm d}x{\rm d}t\\ &\leq &CT^{-\alpha}M^{-1}+CT^{-\alpha}M^{\frac{1}{2}} \Big(\int_{0}^{T}\int_{T^{\frac{1}{2}}M^{-\frac{1}{2}}}^{2T^{\frac{1}{2}}M^{-\frac{1}{2}}} |u|^{p}x\phi_{1}^{l} (1-\frac{t}{T})_{+}^{k}{\rm d}x{\rm d}t\Big)^{\frac{1}{p}}, \end{eqnarray*} $

上式等价于

$ \begin{eqnarray}\label{32} &&\int_{0}^{T}\int_{0}^{+\infty} |u|^{p}x\phi_{1}^{l}(1-\frac{t}{T})_{+}^{k-\alpha}{\rm d}x{\rm d}t\\ &\leq& CM^{-1}+CM^{\frac{1}{2}} \Big(\int_{0}^{T}\int_{T^{\frac{1}{2}}M^{-\frac{1}{2}}}^{2T^{\frac{1}{2}}M^{-\frac{1}{2}}} |u|^{p}x\phi_{1}^{l} (1-\frac{t}{T})_{+}^{k}{\rm d}x{\rm d}t\Big)^{\frac{1}{p}}. \end{eqnarray} $ (3.23)

结合(3.20)和(3.23)式并令$T\rightarrow +\infty$

$ \begin{equation}\label{33} \int_{0}^{+\infty}\int_{0}^{+\infty} |u|^{p}x{\rm d}x{\rm d}t\leq CM^{-1}. \end{equation} $ (3.24)

再令$M\rightarrow +\infty$, 那么可以得到

$ \begin{equation}\label{34}\int_{0}^{+\infty}\int_{0}^{+\infty} |u|^{p}x{\rm d}x{\rm d}t=0. \end{equation} $ (3.25)

同样导致矛盾, 因此完成了定理1.1的证明.

4 定理1.2的证明

首先, 由Hölder可对$K_{1}$$K_{2}$进行如下估计

$ \begin{eqnarray}\label{35} K_{1}&=&\int_{0}^{T}\int_{0}^{+\infty}|u||\phi_{t}|{\rm d}x{\rm d}t\\ &=&C\int_{0}^{T}\int_{0}^{2B}x|u|\phi_{1}^{l}T^{-\alpha-1} (1-\frac{t}{T})_{+}^{k-\alpha-1}{\rm d}x{\rm d}t\\ &\leq& CI^{\frac{1}{p}}\Big(\int_{0}^{T}\int_{0}^{2B}T^{-\alpha-\frac{p}{p-1}}x\phi_{1}^{l} (1-\frac{t}{T})_{+}^{k-\alpha-\frac{p}{p-1}}{\rm d}x{\rm d}t\Big)^{\frac{p-1}{p}}\\ &\leq& CT^{\frac{\alpha}{p}-(\alpha+1)}I^{\frac{1}{p}}\Big(\int_{0}^{T}\int_{0}^{2B}x (1-\frac{t}{T})_{+}^{k-\alpha-\frac{p}{p-1}}{\rm d}x{\rm d}t\Big)^{\frac{p-1}{p}}\\ &\triangleq& CT^{\frac{\alpha}{p}-(\alpha+1)}I^{\frac{1}{p}}K_{11}, \end{eqnarray} $ (4.1)
$ \begin{eqnarray}\label{36} K_{2}&=&\int_{0}^{T}\int_{0}^{+\infty}|u||\phi_{xx}|{\rm d}x{\rm d}t\\ &\leq &CT^{\frac{\alpha}{p}-\alpha}I^{\frac{1}{p}}\Big(\int_{0}^{T}\int_{B}^{2B} (1-\frac{t}{T})_{+}^{k-\alpha}x^{-\frac{1}{p-1}} (\phi_{1x}+x(\phi_{1x})^{2}+x\phi_{1xx})^{\frac{p}{p-1}}{\rm d}x{\rm d}t\Big)^{\frac{p-1}{p}}\\ &\triangleq &CT^{\frac{\alpha}{p}-\alpha}I^{\frac{1}{p}}K_{21}. \end{eqnarray} $ (4.2)

另一方面, 引入如下的变量替换

$ s=\frac{t}{T}, \quad y=\frac{x}{T^{\frac{1}{2}}}, \quad B=T^{\frac{1}{2}}, $

则通过直接计算可估计$K_{11}$$K_{21}$如下

$ \begin{eqnarray}\label{37} K_{11}&=&\Big(\int_{0}^{T}\int_{0}^{2B}x (1-\frac{t}{T})_{+}^{k-\alpha-\frac{p}{p-1}}{\rm d}x{\rm d}t\Big)^{\frac{p-1}{p}}\\ &=&\Big(\int_{0}^{1}\int_{0}^{2}T^{\frac{1}{2}}y(1-s)_{+}^{k-\alpha-\frac{p}{p-1}} T^{\frac{1}{2}+1}{\rm d}y{\rm d}s\Big)^{\frac{p-1}{p}}\\ &\leq& CT^{\frac{2(p-1)}{p}}, \end{eqnarray} $ (4.3)
$ \begin{eqnarray}\label{38} K_{21}&=& \Big(\int_{0}^{T}\int_{B}^{2B} (1-\frac{t}{T})_{+}^{k-\alpha}x^{-\frac{1}{p-1}}\\ &&\times (\phi_{1x}+x(\phi_{1x})^{2}+x\phi_{1xx})^{\frac{p}{p-1}}{\rm d}x{\rm d}t\Big)^{\frac{p-1}{p}}\\ &=&\Big(\int_{0}^{1}\int_{1}^{2}(T^{\frac{1}{2}}y)^{-\frac{1}{p-1}} (1-s)_{+}^{k-\alpha}\\ &&\times(T^{-\frac{p}{2(p-1)}} +T^{-\frac{p}{2(p-1)}} y^{\frac{p}{p-1}})T^{\frac{1}{2}+1}{\rm d}y{\rm d}s\Big)^{\frac{p-1}{p}}\\ &\leq &CT^{-\frac{p+1}{2p}+\frac{3(p+1)}{2p}}. \end{eqnarray} $ (4.4)

联立(4.1), (4.2), (4.3)和(4.4)式可得

$ \begin{eqnarray}\label{39} K_{1}&\leq &CT^{\frac{\alpha}{p}-(\alpha+1)+\frac{2(p-1)}{p}}I^{\frac{1}{p}}, \\ K_{2}&\leq & CT^{\frac{\alpha}{p}-\alpha-\frac{p+1}{2p}+\frac{3(p-1)}{2p}}I^{\frac{1}{p}} =CT^{\frac{\alpha}{p}-(\alpha+1)+\frac{2(p-1)}{p}}I^{\frac{1}{p}}. \end{eqnarray} $ (4.5)

由(3.4), (3.5)和(4.5)式可推出

$ \begin{equation}\label{40} \varepsilon T^{-\alpha}\leq CT^{\frac{\alpha}{p}-(\alpha+1)+\frac{2(p-1)}{p}}I^{\frac{1}{p}}-I. \end{equation} $ (4.6)

由于对任意的$a>0$, $0<b<1$$c\geq0$

$ \begin{equation}\label{41} ac^{b}-c\leq(1-b)b^{\frac{b}{1-b}}a^{\frac{1}{1-b}}, \end{equation} $ (4.7)

因此由(4.6)和(4.7)式可得

$ \begin{eqnarray}\label{42} C\varepsilon T^{-\alpha} &\leq &CT^{\frac{\alpha}{p}-(\alpha+1)+\frac{2(p-1)}{p}}I^{\frac{1}{p}}-I\\ &\leq &(1-\frac{1}{p})(\frac{1}{p})^{\frac{1}{p-1}}(CT^{\frac{\alpha}{p}-(\alpha+1)+\frac{2(p-1)}{p}})^{\frac{p}{p-1}}\\ &\leq& CT^{-\alpha-\frac{p}{p-1}+2}. \end{eqnarray} $ (4.8)

从(4.8)式可以得出我们预期的解的生命跨度上界估计

$ \begin{equation}\label{43} T\leq C\varepsilon^{\frac{p-1}{p-2}}, \end{equation} $ (4.9)

于是完成了定理1.2的证明.

参考文献
[1] Cazenave T. Semilinear Schrödinger Equations. Providene: Amer Math Soc, 2003.
[2] Deng K, Levine H A. The role of critical exponents in blow-up theorems:the sequel. J Math Anal Appl, 2000, 243: 85–126. DOI:10.1006/jmaa.1999.6663
[3] Fino A Z, Georgiev V, Kirane M. Finite time blow-up for a wave equation with a nonlocal nonlinearity. 2010, arXiv:1008.4219vl
[4] Germain P, Masmoudi N, Shatah J. Global solution for 2D quadratic Schrödinger equations. J Math Pures Appl, 2012, 97: 505–543. DOI:10.1016/j.matpur.2011.09.008
[5] Ikeda M. Lifespan of solutions for the nonlinear Schrödinger equation without gauge invariance. 2012, arXiv:1211.6928
[6] Ikeda M, Wakasugi Y. Small-data blow up of L2-solution for the nonlinear Schrödinger equation without gauge invariance. Differential Integral Equation, 2013, 26: 1275–1285.
[7] Ikeda M, Inui T. Small-data blow up of L2 or H1-solution for the similinear Schrödinger equation without gauge invariance. Journal of Evolution Equations, 2015, 15: 571–581. DOI:10.1007/s00028-015-0273-7
[8] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science, 2006.
[9] Kuiper H J. Life span of nonegative solutions to certain qusilinear parabolic cauchy problems. Electronic J Diff Eqs, 2003, 2003: 1–11.
[10] Levine H. The role of critical exponents in blowup theorems. SIAM Rev, 1990, 32: 262–288. DOI:10.1137/1032046
[11] Oh T. A blow up result for the periodic NLS without gauge invariance. C R Acad Sci Paris, 2012, 350: 389–392. DOI:10.1016/j.crma.2012.04.009
[12] Ozawa T, Sunagawa H. Small data blow-up for a system of nonlinear Schrödinger equations. J Math Anal Appl, 2013, 399: 147–155. DOI:10.1016/j.jmaa.2012.10.003
[13] Strauss W A. Nonlinear scattering theory at low energy. J Funct Anal, 1981, 41: 110–133. DOI:10.1016/0022-1236(81)90063-X
[14] Sun F Q. Life span of blow-up solutions for higher-order semilinear parabolic equations. Electronic J Diff Eqs, 2010, 2010: 1–9.
[15] Todorova G, Yordanov B. Critical exponent for a nonlinear wave equation with damping. J Diff Eqs, 2001, 174: 464–489. DOI:10.1006/jdeq.2000.3933
[16] Tsutsumi Y. L2-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkcialaj Ekvacioj, 1987, 30: 115–125.
[17] Zhang Q S. A blow-up result for a nonlinear wave equations with damping:the critical case. C R Acad Sci Paris Sér I Math, 2001, 333: 109–114. DOI:10.1016/S0764-4442(01)01999-1
[18] Zhang Q S. Blow-up results for nonlinear parabolic equations on manifolds. Duke Math J, 1999, 97: 515–539. DOI:10.1215/S0012-7094-99-09719-3