数学物理学报  2016, Vol. 36 Issue (6): 1057-1066   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
漆毅
石擎天
一类近于凸调和映照的凸像半径与Pre-Schwarz导数的估计
漆毅, 石擎天     
北京航空航天大学数学与系统科学学院 & LMIB 北京 100191
摘要:对任意给定的α∈[0,1),对单位圆盘${\Bbb D}$上规范化的保向调和映照类${\cal H}$的一个近于凸子类${\cal P}^{0}(\alpha)=\left\{f=h+\overline{g}\in{{\cal H}}: \Re\left\{h'(z)-\alpha\right\}>|g'(z)|,\ z\in{{\Bbb D}},\ g'(0)=0\right\}$的性质进行了研究,如${\cal P}^{0}(\alpha)$类的凸像和星象半径估计、偏差定理、像域面积的估计、拟共形性,其中得到的凸像和星象半径估计值改进了文献[8, 9]中相应结果.此外,对包含${\cal P}^{0}(\alpha)$的稳定单叶调和映照类(SHU)的Pre-Schwarz导数进行了考虑,得到了精确的上界估计.
关键词近于凸函数     凸像和星象半径     偏差定理     拟共形映照     Pre-Schwarz导数    
Estimations of Convexity Radius and the Norm of Pre-Schwarz Derivative for Close to Convex Harmonic Mappings
Qi Yi, Shi Qingtian     
School of Mathematics and Systems Science & LMIB, Beihang University, Beijing 100191
Abstract: In this paper, the following subclass of ${\cal H}$${\cal P}^{0}(\alpha)=\left\{f=h+\overline{g}\in{{\cal H}}: \Re\left\{h'(z)-\alpha\right\}>|g'(z)|, \ z\in{{\Bbb D}}, \ g'(0)=0\right\}$is studied, where α∈[0, 1) and ${\cal H}$ is the class of all normalized sense preserving harmonic mappings defined in the unit disk D. Estimations of the convexity and starlike radii of ${\cal P}^{0}(\alpha)$ are given, which improve the relative results in [8, 9]. A distortion theorem and a lower bound of $|f({\Bbb D})|$ for all $f\in{\cal P}^{0}(\alpha)$ are obtained. The upper bound of Pre-Schwarzian norms of functions in a subclass of SHU containing $f\in{\cal P}^{0}(\alpha)$ is estimated and the quasiconformality is discussed also.
Key words: Close to convex functions     Convexity and starlike radii     Distortion theorem     Quasiconformal mapping     Pre-Schwarz derivative    
1 引言

设复值函数f(z)在区域$\Omega\subset{{\Bbb C}}$上二阶连续可微且满足

$ \Delta f(z):=\frac{\partial^{2}}{\partial x^{2}}f(z)+\frac{\partial^{2}}{\partial y^{2}}f(z)=0, \ \ z=x+{\rm i}y\in{\Omega}, $

则称f(z)是Ω上调和映照.特别地, 当Ω是单连通区域时, 调和映照f(z)可以表示成$f(z)=h(z)+\overline{g(z)}$的形式, 其中h(z)和g(z)在Ω上分别解析.若规范化g(0)=0, 则f(z)的表达形式是唯一的.众所周知, f(z)在区域Ω上局部单叶且保向的充分必要条件是$J_{f}(z)=|h'(z)|^{2}-|g'(z)|^{2}>0, \ \ z\in{\Omega}$参见文献[1].

${\cal H}$是定义在单位圆盘${\Bbb D}$上所有保向的规范化复值调和映照$f(z)=h(z)+\overline{g(z)}$的全体, 其中h(z)和g(z)在${\Bbb D}$上解析, 且规范化条件是$f(0)=g(0)=h'(0)-1=0$.对给定的$\alpha\in{[0, \ 1)}$, 定义

$ {\cal P}(\alpha)=\left\{f=h+\overline{g}\in{{\cal H}}: \ \Re\left\{h'(z)-\alpha\right\}>g'(z), \ \ z\in{{\Bbb D}}\right\}, $
$ {\cal P}^{0}(\alpha)=\left\{f=h+\overline{g}\in{{\cal P}(\alpha)}:\ g'(0)=0\right\}. $

不难发现, ${\cal P}(\alpha)\subset{\cal S}_{H}$, 其中${\cal S}_{H}$是单位圆盘上所有单叶保向的调和映照全体, 是${\cal H}$中非常重要的子类.有关${\cal S}_{H}$类性质的研究具体可以参见文献[2-6].

最近, 文献[7-9]中对${\cal P}(\alpha)$${\cal P}^{0}(\alpha)$类性质进行了研究.由文献[7], 我们知道, 任何${\cal P}(\alpha)$中函数f(z)都具有近于凸性, 即像域$f({\Bbb D})$的补集是由平面上不交的射线组成.据此, ${\cal P}(\alpha)\subset{\mathrm{SHCC}}$.这里的$\mathrm{SHCC}\subset{{\cal S}_{H}}$是所有稳定近于凸调和映照的全体.其定义为:对于保向调和映照$f(z)=h(z)+\overline{g(z)}$, 若对任何常数λ满足$|\lambda|=1$ $f_{\lambda}(z)=h(z)+\lambda\overline{g(z)}$${\Bbb D}$上均是单叶近于凸函数, 则称$f(z)\in{\mathrm{SHCC}}$.关于SHCC类函数的性质研究具体可以参阅文献[14].尽管${\cal P}(\alpha)$类函数继承了SHCC中许多良好性质, 但仍然难以判定函数是否属于${\cal P}(\alpha)$类.文献[7]中给出了一个充分性条件来判定$f(z)\in{{\cal P}(0)}$, 我们发现这个充分性条件可以推广到${\cal P}(\alpha)$中.

此外, 文献[8-10]中对${\cal P}^{0}(\alpha)$类函数的性质进行了刻画, 其中文献[8]中得到了函数$f(z)\in{{\cal P}^{0}(\alpha)}$的精确系数估计, 并应用它对其凸像和星象半径进行了估计, 同时对f(z)的部分和的单叶半径和凸像半径进行了考虑, 详见文献[8]和[9].但是精确地凸像和星象半径估计仍然未知.

${\cal P}$是单位圆盘${\Bbb D}$上解析函数f(z)的全体, 其中f(z)满足条件$f'(0)=1$$\Re f'(z)>0, $ $z\in{{\Bbb D}}$.不难发现, ${\cal P}\subset{{\cal P}^{0}(\alpha)}$.我们知道${\cal P}$类函数在共性映照理论中起着重要的作用.文献[10]中对${\cal P}$类函数的性质进行了研究.由此, 研究${\cal P}^{0}(\alpha)$类函数的性质将是非常重要的课题.基于文献[7-9]中的相关研究, 我们将研究${\cal P}^{0}(\alpha)$类函数的凸像和星象半径, 偏差定理, 像域的面积估计, 拟共形性以及Pre-Schwarz导数等性质.本文的结构如下.第二节中, 对${\cal P}^{0}(\alpha)$类的凸像和星象半径进行估计, 所得结果改进了文献[8-9]中相应结果; 在第三节中, 我们得到了此类函数的偏差定理, 推广了文献[10]中${\cal P}$类函数的偏差定理; 第四节和第六节中, 我们分别考虑了${\cal P}^{0}(\alpha)$类函数具有拟共形性时具备的条件以及对其像域面积的估计.基于文[14]中对SHU类性质的刻画, 我们得到了SHU类的Pre-Schwarz导数模的精确估计(见定理5.1), 同时对${\cal P}(\alpha)$类和${\cal P}^{0}(\alpha)$类的Pre-Schwarz导数模的上界进行了估计(具体参见定理5.2和推论3).

2 ${\cal P}^{0}(\alpha)$类函数的凸像半径估计

根据文献[7], 我们知道任何$f(z)\in{{\cal P}^{0}(\alpha)}$都是${\Bbb D}$上单叶且近于凸函数, 但f(z)在${\Bbb D}$上不一定凸像或关于原点星象.因此研究${\cal P}^{0}(\alpha)$类函数的凸像和星象半径是非常有意义的.文献[8]中得到了如下估计.

定理A  设$f=h+\overline{g}\in{{\cal P}^{0}(\alpha)}$, 则f(z)在圆盘$|z|<r^{c}$上凸像, 且在圆盘$|z|<r^{\ast}$上关于原点星象, 这里的$r^{c}$$r^{\ast}$表达式为

$ \begin{eqnarray*} r^{c}=1-\sqrt{\frac{2-2\alpha}{3-2\alpha}}, \ \ \ \ r^{\ast}=\frac{1}{3-2\alpha}. \end{eqnarray*} $

由定理A可得, ${\cal P}^{0}(\alpha)$类函数凸像和星象半径分别不小于$r^{c}$$r^{\ast}$.特别地, 文献[9]中指出${\cal P}^{0}(0)$类函数精确的凸像半径是$\sqrt{2}-1$且极值函数是f(z)=-z-2log (1-z).

运用文献[8]中方法, 我们得到了下述定理, 改进了文献[8]和[9]中相应的凸像半径估计结论.

定理2.1  任何$f(z)\in{{\cal P}^{0}(\alpha)}$在圆盘${\Bbb D}_{r_{0}}=\left\{z\in{{\Bbb C}}: |z|<r_{0}\right\}$上凸像, 其中$r_{0}$是下列方程在(0, 1)内的唯一根

$ \begin{equation} \alpha(1-r)^{4}+(1+r)^{2}\left(1-2r-r^{2}\right)=0. \end{equation} $ (2.1)

特别地, 对任何$\alpha\in{[0, \ 1)}$, f(z)在圆盘${\Bbb D}_{\sqrt{2}-1}$内均凸像.

为了证明定理2.1, 我们需要引用如下两个引理:

引理B  设$f(z)=1+\sum\limits_{n=1}^{\infty}b_{n}z^{n}$${\Bbb D}$上解析函数且满足$\Re{f(z)}>0, \ z\in{{\Bbb D}}$, 则有对所有$n\geq 1$, $|b_{2}|\leq 2$

$ |f(z)|\leq\frac{1+|z|}{1-|z|}, \ \ \ \Re f(z)\geq\frac{1-|z|}{1+|z|}, \ \ z\in{{\Bbb D}}. $

引理C  设$f(z)=h(z)+\overline{g(z)}$是单位圆盘${\Bbb D}$上局部单叶调和映照, 则f(z)将${\Bbb D}$单叶映照到$\alpha\in{[0, 2\pi)}$方向凸像的区域上的充分必要条件是$F_{\alpha}(z)=h(z)-{\rm e}^{2{\rm i}\alpha}g(z)$${\Bbb D}$共形映照到$\alpha$方向凸像的区域上.

定理2.1的证明  设$f(z)=h(z)+\overline{g(z)}\in{{\cal P}^{0}(\alpha)}$, 其中$h(z)=z+\sum\limits_{n=2}^{\infty}a_{n}z^{n}$$g(z)=\sum\limits_{n=2}^{\infty}b_{n}z^{n}$${\Bbb D}$上解析.首先, 我们假设$h(z)+\lambda g(z)$在圆盘|z| < r上凸像, 其中复常数λ满足$|\lambda|=1$.由于$f(z)\in{{\cal P}^{0}(\alpha)}$所以

$ \Re\left\{h'(z)+\lambda g'(z)-\alpha\right\}>0, \ \ z\in{{\Bbb D}} $

对任何λ满足$|\lambda|=1$均成立.设

$ F(z)=\frac{1}{1-\alpha}\left[h'(\alpha)+\lambda g'(z)-\alpha\right], $

F(z)在${\Bbb D}$上解析且满足F(0)=1, $\Re F(z)>0\ \ z\in{{\Bbb D}}$.因而, 根据引理B可得

$ \begin{equation} \Re F(z)=\frac{1}{1-\alpha}\Re\left\{h'(z)+\lambda g'(z)-\alpha\right\}\geq\frac{1-|z|}{1+|z|}\ \ z\in{{\Bbb D}} \end{equation} $ (2.2)

以及

$ \begin{equation} |F(z)|=\frac{1}{1-\alpha}\big|h'(z)+\lambda g'(z)-\alpha\big|\leq\frac{1+|z|}{1-|z|}, \ \ z\in{{\Bbb D}}. \end{equation} $ (2.3)

对任意给定的$z\in{{\Bbb D}}$, |F(z)|>0.设

$ G(\xi)=\frac{1}{|F(z)|}\left[F\left(\frac{\xi+z}{1+\xi\overline{z}}\right)+ |F(z)|-F(z)\right], \ \ \ \xi\in{{\Bbb D}}. $

$G(\xi)$${\Bbb D}$上解析, 且

$ \Re G(\xi)=\frac{1}{|F(z)|}\left[\Re\ F\left(\frac{\xi+z}{1+\overline{z}\xi}\right)+|F(z)|-\Re F(z)\right]>0, \ \ \xi\in{{\Bbb D}}. $

$G(\xi)$的幂级数表达式为

$ G(\xi)=1+\frac{F'(z)(1-|z|^{2})}{|F(z)|}\xi+\cdots, $

因此, 再由引理B可得

$ \frac{|F'(z)|}{|F(z)|}\leq\frac{2}{1-|z|^{2}}, \ \ z\in{{\Bbb D}}. $

因而

$ \begin{array}{l} \Re \left\{ {1+z\frac{{h''(z)+\lambda g''(z)}}{{h'(z)+\lambda g'(z)}}} \right\} \ge 1 - |z||\frac{{F'(z)}}{{F(z)+\alpha }}|\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 1 - \frac{1}{{\left| {1+\frac{\alpha }{{F(z)}}} \right|}}\frac{{2|z|}}{{1 - |z{|^2}}}, \;z \in \mathbb{D}. \end{array} $ (2.4)

结合(2.2)和(2.3)式可得

$ \left|1+\frac{\alpha}{F(z)}\right|\geq 1+\alpha\frac{\Re F(z)}{|F(z)|^{2}}\geq 1+\alpha\left(\frac{1-|z|}{1+|z|}\right)^{3}. $

结合(2.4)式, 有

$ \begin{array}{*{20}{c}} \begin{array}{l} \Re \left\{ {1+z\frac{{h''(z)+\lambda g''(z)}}{{h'(z)+\lambda g'(z)}}} \right\} \ge 1 - \frac{1}{{1+\alpha {{\left({\frac{{1 - r}}{{1+r}}} \right)}^3}}}\frac{{2r}}{{1 - {r^2}}}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=1 - \frac{{2r{{(1+r)}^2}}}{{{{(1+r)}^3}(1 - r)+\alpha {{(1 - r)}^4}}} \end{array}\\ {} \end{array} $ (2.5)

对任何$z\in{{\Bbb D}}$$|z|=r<1$都成立.

容易验证关于r的多项式

$ m(r)=(1+r)^{3}(1-r)+\alpha(1-r)^{4}-2r(1+r)^{2} $

在[0, 1]内单调递减.因为$m(0)=1+\alpha>0$m(1)=-8, 所以(2.1)式在(0, 1)内有唯一根$r_{0}$.因此, 可得

$ (1+r)^{3}(1-r)+\alpha(1-r)^{4}>2r(1+r)^{2}, \ \ r\in{[0, r_{0})}, $

$ \Re\left\{1+z\frac{h''(z)+\lambda g''(z)}{h'(z)+\lambda g'(z)}\right\}>0, \ \ \ z\in{{\Bbb D}_{r_{0}}}. $

由此, 我们证得$h(z)+\lambda g(z)$在圆盘${\Bbb D}_{r_{0}}$内凸像.

接下来, 我们将证明f(z)在圆盘${\Bbb D}_{r_{0}}$内也凸像.事实上, 由上述证明我们知道, 对任意给定$\theta\in{[0, 2\pi)}$, $h(z)-{\rm e}^{-2{\rm i}\theta}g(z)$${\Bbb D}_{r_{0}}$内凸像.特别地, $h(z)-{\rm e}^{-2{\rm i}\theta}g(z)$在任何$\theta\in{[0, 2\pi)}$方向上凸像.结合引理C, f(z)在$\theta$方向上凸像.由$\theta\in{[0, 2\pi)}$的任意性可得, f(z)在圆盘${\Bbb D}_{r_{0}}$上凸像.

由于$\sqrt{2}-1\in{(0, 1)}$$m(\sqrt{2}-1)=4\alpha(\sqrt{2}-1)^{4}>0$, 则有$r_{0}>\sqrt{2}-1$.因此, f(z)在${\Bbb D}_{\sqrt{2}-1}$上凸像, 从而定理2.1得证.

综合定理2.1和定理A, 下述引理可以得到并改进了文献[8]中定理A和文献[9]中定理1.

推论1  任何$f(z)=h(z)+\overline{g(z)}\in{{\cal P}^{0}(\alpha)}$在圆盘${\Bbb D}_{r_{1}}$内凸像, 其中

$ {r_1}=\left\{ {\begin{array}{*{20}{l}} {\sqrt 2 - 1, }&{0 \le \alpha \le \frac{2}{7}(4 - \sqrt 2)\approx 0.738796, }\\ {1 - \sqrt {\frac{{2(1 - \alpha)}}{{3 - 2\alpha }}}, }&{\frac{2}{7}(4 - \sqrt 2)<\alpha <1.} \end{array}} \right. $

特别地, 当$\alpha=0$时, $r_{1}=\sqrt{2}-1$是精确的.且函数$f(z)=-z-2\log(1-z)$达到极值.

由于凸像函数同时也是关于原点星象, 因此${\cal P}^{0}(\alpha)$类的星象半径可以推广如下:

推论2  任何$f(z)=h(z)+\overline{g(z)}\in{{\cal P}^{0}(\alpha)}$在圆盘${\Bbb D}_{r_{2}}$内关于原点星象, 其中

$ {r_2}=\left\{ {\begin{array}{*{20}{l}} {\sqrt 2 - 1, \;\;}&{0 \le \alpha \le 1 - \frac{{\sqrt 2 }}{2} \approx 0.292893, }\\ {\frac{1}{{3 - 2\alpha }}, }&{1 - \frac{{\sqrt 2 }}{2} <\alpha <1.} \end{array}} \right. $

特别地, 当$\alpha=0$时, $r_{2}=\sqrt{2}-1$是精确的.且函数$f(z)=-z-2\log(1-z)$达到极值.

3 ${\cal P}^{0}(\alpha)$类函数的偏差定理

偏差定理是调和映照理论中非常常见的问题, 本节中, 我们将考察${\cal P}^{0}(\alpha)$类函数的偏差定理, 所得结果改进了文献[10, 推论1].

定理3.1  设$f(z)=h(z)+\overline{g(z)}\in{{\cal P}^{0}(\alpha)}$其中h(z)和g(z)在${\Bbb D}$内解析.则对任何$z\in{{\Bbb D}}$, 有

$ \begin{equation} |g'(z)|\leq\frac{1-\alpha}{2}\frac{1+|z|}{1-|z|}, \end{equation} $ (3.1)
$ \begin{equation} \alpha+(1-\alpha)\frac{1-|z|}{1+|z|}\leq \Re h'(z)\leq |h'(z)|\leq \alpha+(1-\alpha)\frac{1+|z|}{1-|z|}, \end{equation} $ (3.2)
$ \begin{equation} \alpha|z|-(1-\alpha)(|z|-2\log(1+|z|))\leq |h(z)|\leq \alpha|z|-(1-\alpha)(|z|-2\log(1-|z|)). \end{equation} $ (3.3)

  由于$f(z)=h(z)+\overline{g(z)}$${\Bbb D}$内保向, 则有$|h'(z)|>|g'(z)|, \ z\in{{\Bbb D}}$.因此, $\mu(z)=g'(z)/h'(z)$${\Bbb D}$内有定义且满足$|\mu(z)|<1, \ z\in{{\Bbb D}}$.因为, $f(z)=h(z)+\overline{g(z)}\in{{\cal P}^{0}(\alpha)}$, 所以对任何复常数λ满足$|\lambda|=1$, (2.2)和(2.3)式均成立.因此, 我们可得

$ \Re h'(z)\ge \alpha+(1 - \alpha)\frac{{1 - |z|}}{{1+|z|}} - \Re \lambda g'(z) $ (3.4)

$ \begin{equation} |h'(z)|\leq \frac{1}{|1+\lambda\mu(z)|}\bigg[\alpha+(1-\alpha)\frac{1+|z|}{1-|z|}\bigg] \end{equation} $ (3.5)

对所有λ满足$|\lambda|=1$以及$z\in{{\Bbb D}}$都成立.

对任意给定$z\in{{\Bbb D}}$, (3.4)和(3.5)式中分别选取适当的参数λ, 我们得到

$ \begin{equation} \Re h'(z)\geq \alpha+(1-\alpha)\frac{1-|z|}{1+|z|}+|g'(z)|\geq \alpha+(1-\alpha)\frac{1-|z|}{1+|z|} \end{equation} $ (3.6)

$ \begin{equation} |h'(z)|\leq \frac{1}{1+|\mu(z)|}\bigg[\alpha+(1-\alpha)\frac{1+|z|}{1-|z|}\bigg]\leq \alpha+(1-\alpha)\frac{1+|z|}{1-|z|}. \end{equation} $ (3.7)

因此, (3.2)式可以直接得证且(3.3)式可以通过(3.2)式积分可得.

此外, (3.1)式可以由假设$\Re\{h'(z)-\alpha\}>|g'(z)|$和(3.7)式中第一个不等式可得, 即

$ \begin{eqnarray*} |g'(z)|&\leq&\frac{1}{2}\bigg[|h'(z)|-\alpha+|g'(z)|\bigg]\\ &=&\frac{1}{2}\bigg[(1+|\mu(z)|)|h'(z)|-\alpha\bigg]\\ &\leq&\frac{1-\alpha}{2}\frac{1+|z|}{1-|z|}. \end{eqnarray*} $

从而定理3.1得证.

4 ${\cal P}^{0}(\alpha)$类函数的拟共形性

在考虑${\cal P}^{0}(\alpha)$类函数的拟共形性前, 为叙述的方便, 我们首先介绍相关概念如下:设f(z)是区域$\Omega\subset{{\Bbb C}}$上保向同胚映照, 若f(z)在Ω上具有ACL性质且存在常数$K\geq 1$满足

$ \begin{eqnarray*} \left|f_{\overline{z}}(z)\right|\leq\frac{K-1}{K+1}\left|f_{z}(z)\right|, \ \ {\rm a.e.}\ \ z\in{\Omega}, \end{eqnarray*} $

则称f(z)是Ω上K-拟共形映照.进一步, 若f(z)在Ω上调和, 则称f(z)是调和拟共形映照.特别地, 我们称全平面${\Bbb C}$K-拟共形映照在单位圆周下的像为K-拟圆周(具体参见文献[11-12]).

文献[7]中证得:若$f(z)=h(z)+\overline{g(z)}\in{{\cal H}}$h(z)和g(z)的级数系数满足

$ \sum\limits_{n=2}^\infty n |{a_n}|+\sum\limits_{n=1}^\infty n |{b_n}| \le 1, $ (4.1)

则有$f(z)\in{{\cal P}(0)}$.由此, 可推广到更一般.若h(z)和g(z)的幂级数的系数满足

$ \sum\limits_{n=2}^\infty n |{a_n}|+\sum\limits_{n=1}^\infty n |{b_n}| \le 1 - \alpha, $ (4.2)

则有$f(z)\in{{\cal P}(\alpha)}$.事实上, 若$f(z)=h(z)+\overline{g(z)}\in{{\cal H}}$且其幂级数的系数满足(4.2)式.令

$ \begin{eqnarray*} F(z)=\frac{1}{1-\alpha}\left[f(z)-\alpha z\right]\ \ \ z\in{{\Bbb D}}, \end{eqnarray*} $

则有$F(z)\in{{\cal H}}$F(z)的幂级数的系数满足(4.1)式.因而, $F(z)\in{{\cal P}(0)}$, i.e.$f(z)\in{{\cal P}(\alpha)}$.进一步, 若$g'(0)=0$, 则$f(z)\in{{\cal P}^{0}(\alpha)}$.

基于上述分析, 我们知道任何$f(z)=h(z)+\overline{g(z)}\in{{\cal H}}$$g'(0)=0$, 若h(z)和g(z)的幂级数系数满足(4.2)式, 则有$f(z)\in{{\cal P}^{0}(\alpha)}$.针对${\cal P}^{0}(\alpha)$中这类函数, 我们考虑其拟共形性如下:

定理4.1  设$f(z)=h(z)+\overline{g(z)}\in{{\cal H}}$$g'(0)=0$, h(z)和g(z)的幂级数系数满足(4.2)式, 则有$f(z): {\Bbb D}\rightarrow f({\Bbb D})$K-调和拟共形映照且$f(\partial {\Bbb D})$K-拟圆周.其中$K=(2-\alpha)/\alpha$.此外, f(z)可以K-拟共形延拓到复平面${\Bbb C}$上为

$ \begin{eqnarray*} F(z)= \left\{\begin{array}{ll} z+\displaystyle\sum\limits_{n=2}^{\infty}a_{n}z^{n}+\displaystyle\sum\limits_{n=2}^{\infty}\overline{b_{n}}\overline{z}^{n}, \ &|z|<1, \\[4mm] z+\displaystyle\sum\limits_{n=2}^{\infty}a_{n}\overline{z}^{-n}+\displaystyle\sum\limits_{n=2}^{\infty}\overline{b_{n}}z^{-n}, \ \ &|z|\geq 1. \end{array}\right. \end{eqnarray*} $

事实上, 令$\psi_{n}=\frac{n}{1-\alpha}$, 则$\psi_{n}$是一组正数列且满足$\frac{\psi_{n}}{n}\geq\frac{\psi_{2}}{2}>1$, $n\geq 3$.根据(4.2)式可得

$ \displaystyle\sum\limits_{n=2}^{\infty}\psi_{n}(|a_{n}|+|b_{n}|)\leq 1. $

运用文献[13]中定理3.5, 定理3.6和引理3.4可得定理4.1.

上述定理中条件(4.2)要求太高, 因为由(4.2)式可直接导出$|h'(z)|+|g'(z)|<2-\alpha, \ \ z\in{{\Bbb D}}$.然而, 存在${\cal P}^{0}(\alpha)$类的函数$f(z)=h(z)+\overline{g(z)}$使得$|h'(z)|+|g'(z)|$${\Bbb D}$上无界(应用定理3.1).

5 ${\cal P}^{0}(\alpha)$类函数的Pre-Schwarz导数模的估计

$f(z)=h(z)+\overline{g(z)}\in{{\cal H}}$$\omega(z)=g'(z)/h'(z)$f(z)的复特征.首先定义f(z)的Pre-Schwarz导数和Schwarz导数分别为

$ \begin{equation} P_{f}(z)=\frac{h''(z)}{h'(z)}-\frac{\overline{\omega(z)}\omega'(z)}{1-|\omega(z)|^{2}}, \end{equation} $ (5.1)
$ \begin{equation} S_{f}(z)=\left(P_{f}(z)\right)_{z}-\frac{1}{2}\left(P_{f}(z)\right)^{2}, \end{equation} $ (5.2)

且其在单位圆盘${\Bbb D}$上的模分别定义为[15]

$ \|P_{f}\|=\displaystyle\sup_{z\in{{\Bbb D}}}(1-|z|^{2})|P_{f}(z)|\;\;\mbox{和}\;\; \|S_{f}\|=\displaystyle\sup_{z\in{{\Bbb D}}}(1-|z|^{2})^{2}|S_{f}(z)|. $

上述定义是局部单叶解析函数类的推广, 而且这种定义较之文献[16]中相应定义有所区别.文献[16]中的定义仅适用于复特征$\omega(z)=q(z)^{2}$的保向调和映照类, 其中q(z)是${\Bbb D}$上解析函数满足$|q(z)|<1\ \ z\in{{\Bbb D}}$.

最近, 文献[15]和[17]研究了保向调和映照的Pre-Schwarz导数模和Schwarz导数模的估计.文献[15]证得对于${\Bbb D}$上所有凸像调和映照f(z), 有

$ \begin{eqnarray*} \|S_{f}\|\leq 6\ \ \mbox{和}\ \ \|P_{f}\|\leq 5, \end{eqnarray*} $

其中上界5是精确的.进一步, 存在绝对常数C>0使得任何单叶调和映照f(z)均有[15]

$ {S_f} \le C. $ (5.3)

此外, 文献[17]中发现对于稳定单叶调和映照(记为SHU), C=6;对于稳定凸像调和映照(记为SHC), C=2, 其中SHU (SHC)定义为:保向的单叶(凸像)调和映照$f(z)=h(z)+\overline{g(z)}$, 若对于任何常数λ满足$|\lambda|=1$使得$f_{\lambda}(z)=h(z)+\lambda \overline{g(z)}$${\Bbb D}$上均单叶(凸像), 则称f(z)具有单叶(凸像)稳定性.

接下来, 我们来估计${\cal P}^{0}(\alpha)$类的Pre-Schwarz导数模.我们知道, ${\cal P}^{0}(\alpha)\subset{\mathrm{SHCC}}\subset{\mathrm{SHU}}$.在估计${\cal P}^{0}(\alpha)$的Pre-Schwarz导数模前, 我们先对SHU及其子类进行考虑.

定理5.1  设$f(z)=h(z)+\overline{g(z)}\in{\mathrm{SHU}}$定义在单位圆盘${\Bbb D}$上, 则$\|P_{f}\|\leq 6$且常数6是精确的, 对应的极值函数是$k(z)=z/(1-z)^{2}$.

  设$\omega(z)$f(z)的复特征.由文献[14, 引理1]可得

$ P_{f}(z_{0})=P(h-\overline{\omega(z_{0})}g)(z_{0}), \ \ z_{0}\in{{\Bbb D}}. $

根据下述Pommerenke不等式[18](或文献[17, (37)式]), 对于任何${\Bbb D}$上解析函数h(z), 有

$ (1-|z|^{2})\left|\frac{h''(z)}{h'(z)}\right|\leq 2+2\sqrt{1+\frac{1}{2}\|Sh\|}, \ \ \ \ \forall z\in{{\Bbb D}}. $

从而可得

$ \begin{array}{l} |{P_f}({z_0})|(1 - |{z_0}{|^2})=(1 - |{z_0}{|^2})|P(h - \overline {\omega({z_0})} g)({z_0})|\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\le 2+2\sqrt {1+\frac{1}{2}\left\| {S(h - \overline {\omega({z_0})} g)} \right\|}. \end{array} $ (5.4)

因为$f(z)\in{\mathrm{SHU}}$, $h(z)-\overline{\omega(z_{0})}g(z)$${\Bbb D}$上单叶.所以, 由(5.4)式和Krauss定理可得

$ \left|P_{f}(z_{0})\right|(1-|z_{0}|^{2})\leq 6. $

由此可直接推出$\|P_{f}\|\leq 6$.容易验证$\|P_{k}\|=6$, 其中k(z)定义如定理.

定理5.2  设$f(z)=h(z)+\overline{g(z)}\in{{\cal H}}$$\Re h'(z)>0, \ \ z\in{{\Bbb D}}$, 则有$\|P_{f}\|\leq 3$.

  设$f(z)=h(z)+\overline{g(z)}\in{{\cal H}}$满足$\Re h'(z)>0$, 则有f(z)的复特征$\omega(z): {\Bbb D}\rightarrow {\Bbb D}$是解析函数.利用Schwarz-Pick引理可得

$ \begin{equation} \frac{|\omega(z)\omega'(z)|}{1-|\omega(z)|^{2}}\leq\frac{1}{1-|z|^{2}}. \end{equation} $ (5.5)

因为h'(0)=1且$\Re h'(z)>0$, 所以h'(z)是一个Gelfer函数(${\Bbb D}$上解析函数g(z), 若满足g(0)=1且对于所有$z, \omega\in{{\Bbb D}}$都有$g(z)+g(\omega)\neq 0$, 则称g(z)是Gelfer函数).因此, 根据文献[19, 性质G6](或定理2.1的证明)可得

$ \left|\frac{h''(z)}{h'(z)}\right|\leq\frac{2}{1-|z|^{2}}, \ \ z\in{{\Bbb D}}. $

所以

$ \begin{equation} \|Ph\|=\displaystyle\sup_{z\in{{\Bbb D}}}(1-|z|^{2}) \left|\frac{h''(z)}{h'(z)}\right|\leq 2. \end{equation} $ (5.6)

由Pre-Schwarz导数的定义(5.1)式, 有

$ \begin{equation} (1-|z|^{2})\left|P_{f}(z)\right|\leq\|Ph\|+\left| \frac{\overline{\omega(z)}\omega'(z)(1-|z|^{2})} {1-|\omega(z)|^{2}}\right|, \ \ z\in{{\Bbb D}}. \end{equation} $ (5.7)

所以由(5.5), (5.6)和(5.7)式可得$\|P_{f}\|\leq 3$.

  由定理5.2的证明过程我们知道:对于所有函数$f(z)\in{{\cal P}}$均有$\|Pf\|\leq 2$, 且上界2是精确的.对应的极值函数为$f(z)=-z-2\log(1-z)$.

因为${\cal P}^{0}(\alpha)\subset{\{f=h+\overline{g}\in{{\cal H}}: \Re h'(z)>0\}}$, 所以由定理5.2可以得到${\cal P}^{0}(\alpha)$类的Pre-Schwarz导数模估计如下:

推论3  设$f(z)=h(z)+\overline{g(z)}\in{{\cal P}^{0}(\alpha)}$, 则有$\|P_{f}\|\leq 3$.

6 ${\cal P}^{0}(\alpha)$类函数的像域的面积估计

本节中, 我们将估计${\cal P}^{0}(\alpha)$类函数在圆盘${\Bbb D}_{r}=\left\{z\in{{\Bbb C}: |z|<r}\right\}$(0 < r < 1)上像域的面积.我们知道文献[9]中给出了${\cal P}^{0}(0)$类的上界精确估计, 所以我们重点是估计面积的下界.

定理6.1  设$f(z)=h(z)+\overline{g(z)}\in{{\cal P}^{0}(\alpha)}$, 则对于$0<r<1$, 有

$ 2\alpha \pi [(\alpha - \frac{1}{2}){r^2} + 2(1 - \alpha )(r - \ln (1 + r))] < |f({\mathbb{D}_r})| < \pi [1 + \sum\limits_{n = 2}^\infty 4 n{(1 - \alpha )^2}{r^{2n}}]. $ (6.1)

  设$f(z)=h(z)+\overline{g(z)}\in{{\cal P}^{0}(\alpha)}$, 其中$h(z)=z+\sum\limits_{n=2}^{\infty}a_{n}z^{n}$$g(z)=\sum\limits_{n=2}^{\infty}b_{n}z^{n}$, 则对任意给定且满足$|\lambda|=1$λ, $\Re\left\{h'(z)+\lambda g'(z)\right\}>\alpha$对所有$z\in{{\Bbb D}}$都成立.因此, 选择适当的λ可得

$ \begin{eqnarray*} |h'(z)|-|g'(z)|=|h'(z)+\lambda g'(z)|\geq \Re\left\{h'(z)+\lambda g'(z)\right\}>\alpha. \end{eqnarray*} $

故有

$ \begin{eqnarray} |f({\Bbb D}_r)|=\iint_{{\Bbb D}_{r}}(|h'(z)|^{2}-|g'(z)|^{2}){\rm d}x{\rm d}y >\alpha\iint_{{\Bbb D}_{r}}(|h'(z)|+|g'(z)|){\rm d}x{\rm d}y. \end{eqnarray} $ (6.2)

对任何$z\in{{\Bbb D}}$, 再选择适当的λ并运用(2.2)式可得

$ \begin{array}{l} |h'(z)| + |g'(z)| = \left| {h'(z) + \lambda g'(z)} \right| \ge \Re \left\{ {h'(z) + \lambda g'(z) - \alpha } \right\} + \alpha \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ge \alpha + (1 - \alpha )\frac{{1 + |z|}}{{1 - |z|}}. \end{array} $ (6.3)

结合(6.2)和(6.3)式, 对其像域的面积下界估计为

$ \begin{eqnarray*} \left| f({\Bbb D}_{r})\right|&>&\alpha\iint_{{\Bbb D}_{r}}\left[ \alpha+(1-\alpha)\frac{1+|z|}{1-|z|}\right]{\rm d}x{\rm d}y\\ &=&2\alpha\pi\left[(\alpha-\frac{1}{2})r^{2}+2(1-\alpha)(r-\log(1+r))\right]. \end{eqnarray*} $ (6.4)

从而证得(6.1)式中第一个不等式.

利用文献[9, 定理5]中的方法, (6.1)式中第二个不等式亦可以直接得到.

参考文献
[1] Duren P. Harmonic Mappings in the Plane. New York: Cambridge University Press, 2004.
[2] Ponnusamy S, Rasila A, Sairam Kaliraj A. Harmonic close-to-convex functions and minimal surfaces. Complex Var Elliptic Equ, 2013, 59(7): 1–17.
[3] Clunie J, Sheil-Small T. Harmonic univalent functions. Ann Acad Sci Fenn Math, 1984, 9: 3–26. DOI:10.5186/aasfm.00
[4] Chen H H. Some new results on planar harmonic mappings. Sci China, 2010, 53(3): 597–604. DOI:10.1007/s11425-010-0051-5
[5] Kalaj D. Quasiconformal harmonic mappings and close-to-convex domains. Filomat, 2010, 24(1): 63–68. DOI:10.2298/FIL1001063K
[6] Liu M S, Liu Z X. Landau-type theorems for p-harmonic mappings or log-p-harmonic mappings. Appl Anal, 2014, 93(11): 2462–2477. DOI:10.1080/00036811.2014.890711
[7] Ponnusamy S, Yamamoto H, Yanagihara H. Variability regions for certain families of harmonic univalent mappings. Complex Var Elliptic Equ, 2013, 58(1): 23–34. DOI:10.1080/17476933.2010.551200
[8] Li L, Ponnusamy S. Injectivity of sections of univalent harmonic mappings. Nonlinear Anal, 2013, 89: 276–283. DOI:10.1016/j.na.2013.05.016
[9] Li L, Ponnusamy S. Disk of convexity of sections of univalent harmonic functions. J Math Anal Appl, 2013, 408(2): 589–596. DOI:10.1016/j.jmaa.2013.06.021
[10] MacGregor T H. Functions whose derivative has a positive real part. Trans Amer Math Soc, 1962, 104: 532–537. DOI:10.1090/S0002-9947-1962-0140674-7
[11] Ahlfors L V. Lectures on Quasiconformal Mappings. American: American Mathematical Society, 1966.
[12] Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane. London: Springer-Verlag, 1973.
[13] Hamada H, Honda T, Shon K H. Quasiconformal extensions of starlike harmonic mappings in the unit disc. Bull Korean Math Soc, 2013, 50(4): 1377–1387. DOI:10.4134/BKMS.2013.50.4.1377
[14] Hernandez R, Martín M J. Stable geometric properties of analytic and harmonic functions. Math Proc Cambridge Philos Soc, 2013, 155(2): 343–359. DOI:10.1017/S0305004113000340
[15] Hernandez R, Martín M J. Pre-Schwarzian and Schwarzian derivatives of harmonic mappings. J Geom Anal, 2015, 25(1): 64–91. DOI:10.1007/s12220-013-9413-x
[16] Chuaqui M, Duren P, Osgood B. The Schwarzian derivative for harmonic mappings. J Anal Math, 2003, 91(1): 329–351. DOI:10.1007/BF02788793
[17] Chuaqui M, Hernández R, Martín M J. Affine and linear invariant families of harmonic mappings. 2014, arXiv:1405.5106
[18] Pommerenke C. Linear-invariante familien analytischer funktionen I. Math Ann, 1964, 155: 108–154. DOI:10.1007/BF01344077
[19] Yamashita S. Gelfer functions, integral means, bounded mean oscillation, and univalency. Trans Amer Math Soc, 1990, 321(1): 245–259.