数学物理学报  2016, Vol. 36 Issue (1): 176-186   PDF (364 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
陈旭
杨向群
基于MAP风险模型的最优分红问题研究
陈旭, 杨向群     
湖南师范大学数学与计算机学院, 高性能计算与随机信息处理省部共建教育部重点实验室 长沙 410081
摘要: 在保险公司财务核算和分红均发生在随机时间点的假设条件下,讨论保险公司的最优分红问题.假设保险公司的盈余过程是经过MAP (马氏到达过程)的相过程调制的复合泊松过程,保险公司对盈余过程的观测和分红都发生在MAP的跳点上,以最大化期望折现分红总量为目标,证明了最优分红策略为band策略,并分析了经济状态和分红机会对值函数和分红策略的影响.
关键词: 折现分红总量     随机观察     MAP     贝尔曼方程    
Optimal Dividend-Payout in a MAP Risk Model
Chen Xu, Yang Xiangqun    
College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081
Abstract: In this paper, we model the surplus process of the insurance by the classical compound Poisson risk model modulated by an continuous-time Markov chain, which is the phase process of a Markovian Arrival Process(MAP). The surplus process can't be observed continuously. The observation and the possible dividend are restricted to a sequence of random discrete time points which are determined by the same MAP. The insurance has only observation opportunities at some of these random time points, and has both observation and paying dividend opportunities at the other random time points. The object of the insurance is to select the dividend strategy that maximizes the expected total discounted dividend payments until ruin. The purpose of this paper is to analyze the impact of the paying dividend opportunity and the economic state on the value functions and dividend strategies. We show that the optimal dividend pay-out policy is a band policy at dividend pay-out times.
Key words: Discounted dividend payments     Randomized observation periods     MAP     Bellman equation    

1 引言

保险风险模型中的分红策略最早由De Finetti[1]引入, 之后分红问题的讨论成为风险理论的经典问题,参见文献[2, 3, 4, 5]. 在已有的研究中,保险公司对资产的观测都是连续进行的,而分红通常假定为一常数的分红率, 这些在现实中都是无法实现的,无论是资产核算还是保险公司分红通常是发生在具体的时间点上, 而这些时间点均具有随机性,为了刻画这种随机性,Albrecher等引入了"随机观察"的概念, 分别在文献[6, 7, 8]中讨论了Gerber-Shiu函数,分红模型和最优策略.

本文研究MAP风险模型中的最优分红问题. MAP是成批到达马氏过程的一特例, 其被广泛应用于排队论、稳定性及通讯系统领域中随机模型的构建. 近年来,MAP也被引入风险理论的研究. Cheung和Landriault在文献 [9] 中引入了门槛策略依赖于MAP相过程的风险模型, 在文献[10]中推广了同一模型下的Gerber-Shiu函数; Zhang等[11]在存在借款利率的情况下讨论了绝对破产概率; Salah和Morales[13]在一类广义谱负MAP风险模型的基础上讨论了 Gerber-Shiu 函数. 虽然关于MAP风险模型的研究已经有了一些优美的成果, 但目前还没有关于最优分红策略的讨论.

本文将通过MAP过程从另外一个角度来构建风险模型,用MAP的相过程描述市场环境的随机性, 用MAP的跳来刻画保险公司行为的随机性.假设保险公司的盈余过程受MAP的相过程的调制, 同时保险公司只能在MAP的跳点上可以对公司的资金进行观测,在某些跳点上, 保险公司可以进行分红. 在以上假设条件下, 本文以最大化折现期望分红总量为目标,寻找随机分红点上的最优分红策略, 并分析市场经济状况和分红机会对值函数和最优策略的影响.

2 有分红支付的MAP风险模型

$(\Omega,{\cal F},P)$是一概率空间,考虑经典风险模型 \begin{equation}\label{*} S_{t}=x+ct-\sum_{i=1}^{N_{t}}Y_{i},~~t\geq 0, \tag{2.1} \end{equation} 其中$S_{0}=x\geq 0$,$N=\{N_{t},t\geq 0\}$是泊松过程, $\{Y_{i}\}_{i\in{\Bbb N}}$是一列独立同分布的随机变量,$\{Y_{i}\}_{i\in{\Bbb N}}$和 $N=\{N_{t}\}_{\geq 0}$独立.

假设复合泊松风险模型(2.1)只能在随机离散时间点$\{Z_{k}\}_{k=0}^{\infty}$ 被观测到($Z_{k}$是第$k$次观测时间点,$Z_{0}=0$),$T_{k}=Z_{k}-Z_{k-1}$ 是第$k$次观测时间间隔. 假设$\{Z_{k}\}_{k=0}^{\infty}$是MAP过程$(M(t),J(t))$的跳点. 其中 $\{M(t),t\geq 0\}$是计数过程, $J=\{J(t):t\geq 0\}$是状态空间为$E_{J}=\{1,2,\cdots ,d\}$的不可约马氏链, $d$是一有理正整数,$\{J(t),t\geq 0\}$通常称为相过程. 本文中假定$J(t)$描述经济状态的变化,$M(t)$是分红次数的计数过程. $J$的无穷小生成元记为$Q$,$Q=D_{0}+D_{1}$,其中$D_{0}=(d_{ij})_{i,j=1,\cdots ,d}$, $D_{1}=(D_{ij})_{i,j=1,\cdots ,d}$称为MAP过程的特征,MAP过程$(M(t),J(t))$ 可记为MAP($D_{0},D_{1}$). 由$J$的常返性有 \begin{equation}\label{D} (D_{0}+D_{1})\times(1,\cdots ,1)^{T}=0.\tag{2.2} \end{equation} 利用$(M(t),J(t))$的特征,可以给出观测时间间隔的条件分布 \begin{equation}\label{P1} P(T_{n+1}>t|M(Z_{n})=m,J(Z_{n})=i)=e^{d_{ii}t}, \tag{2.3} \end{equation} %其中$q_{ii}$是$Q$的对角元素,$q_{ii}=d_{ii}$.可见$T_{n+1}$是一指数分布且其参数仅依赖于状态$J(Z_{n})$. 假设$J$正处于状态$i\in E_{J}$, MAP$D_{0},D_{1}$下一步的状态变化有两种可能. 第一类,计数过程$M(t)$增加, 相过程由$i$转移到$j$,$i,j\in E_{J}$,表示保险公司进行了分红, 其转移概率为$p_{ij}^{(1)}$ \begin{equation}\label{P2} p_{ij}^{(1)}:={\rm P}(M(Z_{n+1})=m+1,J(Z_{n+1})=j|M(Z_{n})=m, J(Z_{n})=i)=-\frac{D_{ij}}{d_{ii}}.\tag{2.4} \end{equation} 第二类,计数过程$M(t)$未增加,相过程由$i$转移到$j$,$i,j\in E_{J}$, 表示保险公司只进行了观测而没有分红,其转移概率为$p_{ij}^{(0)}$ \begin{equation}\label{P3} p_{ij}^{(0)}:={\rm P}(M(Z_{n+1})=m,J(Z_{n+1})=j|M(Z_{n})=m,J(Z_{n})=i)= \left\{\begin{array}{ll} -\frac{d_{ij}}{d_{ii}},~~& j\ne i,\\ 0,& j=i. \end{array}\right. \tag{2.5} \end{equation} 对任意的$i\in E_{J}$,$\{p_{ij}^{(k)},k=0,1,j\in E_{J}\}$满足 \begin{equation} \sum_{k=0}^{1}\sum_{j\in E_{J}}p_{ij}^{(k)}=1.\tag{2.6} \end{equation}

假设风险过程(2.1)被$J$所调制,则盈余过程为 \begin{equation}\label{model} R(t)=x+\sum_{i=1}^{d}\int_{0}^{t}I_{\{J_{s}=i\}}{\rm d}S_{i}(s),~~ t\geq 0, \tag{2.7} \end{equation} 其中$x=R(0)\geq 0$是初始资产,$I_{\{.\}}$为示性函数,$\{S_{1}(t)\},\{S_{2}(t)\}, \cdots ,\{S_{d}(t)\}$为$d$个独立的风险过程 \begin{equation}\label{modeli} S_{i}(t)=x+c_{i}t -\sum_{k=1}^{N_{i}(t)}Y_{k}^{i},~~ i\in E_{J}, \tag{2.8} \end{equation} 其中$c_{i}$为常数保费率,$\{N_{i}(t)\}$是泊松过程. 赔付$\{Y_{k}^{i},k=1,2,\cdots \}$是与$Y^i$独立同分布的连续型随机变量,$Y^{i}$的概率分布函数为 $F_{Y}^{i}(.)$,密度函数为$f_{Y}^{i}(.)$,均值为$\mu_{i}$. 另外,$\{Y_{k}^{i},k=1,2,\cdots ,i=1,$ $\cdots ,d\}$,$\{N_{i}(t),i=1,\cdots ,d\}$ 和$\{(M(t),J(t)),t\geq 0\}$均相互独立.

记 \begin{equation}\label{Y} R_{n}:=S(Z_{n})-S(Z_{n-1}),~~n=1,2,\cdots \tag{2.9} \end{equation} 为盈余过程在两个观测时间点上的增量.可证明$(R_{n},T_{n})$和$(M(Z_{n}),J(Z_{n}))$ 是条件独立的 \begin{eqnarray}\label{P4} &&P(R_{n+1}\in B,T_{n+1}\in A,M(Z_{n+1})=k,J(Z_{n+1})=j| M(Z_{n})=m,J(Z_{n})=i) \\ &=&P(R_{n+1}\in B,T_{n+1}\in A| M(Z_{n})=m,J(Z_{n})=i) \\ && \times P( M(Z_{n+1})=k,J(Z_{n+1})=j| M(Z_{n})=m,J(Z_{n})=i) \\ &=&Q_{i}(B,A)\times p_{ij}^{(k-m)}, \tag{2.10} \end{eqnarray} 其中$B\in{\cal B}({\Bbb R})$,$A\subset[0,\infty)$,$i,j\in E_{J}$,$k=m,m+1$. $Q_{i}$是$R_{n+1}$和$T_{n+1}$ 在$J(Z_{n})=i$时的条件联合分布(独立于$M(t)$和$n$).

令$x\in[0,\infty)$ 表示未分红之前的盈余. 当经济状态为$i$时,分红策略集合为$D_{i}(x)=[0,x]$. $\pi=(f_{0},f_{1},\cdots )$ ,$f_{n}:{\Bbb R}_{+}\to {\Bbb R}_{+}$是一个分红策略, 其中$f_{n}(x)\in D_{J(Z_{n})}(x)$.

受控盈余过程$(X_{n})$可表示为 \begin{equation}\label{X} X_{n}=X_{n-1}-f_{n-1}(X_{n-1})+R_{n},~~n=1,2,\cdots , \tag{2.11} \end{equation} 其中$X_{0}=x$, \begin{equation}\label{f} f_{n-1}(X_{n-1})=\left\{\begin{array}{ll}0,~~& Z_{n-1}\ \mbox{为非分红时间点,} \\ g_{n-1}(X_{n-1},J(Z_{n-1})),~~& Z_{n-1} \ \mbox{为分红时间点,} \end{array}\right. \tag{2.12} \end{equation} 其中$g_{n}:{\Bbb R}_{+}\times E_{J}\to {\Bbb R}_{+}$, $g_{n}(x,i)\in D_{i}(x)$是一个分红决策.$g_{n-1}(X_{n-1},J(Z_{n-1}))=0$表明在分红点的分红量为零. 因此在分红点保险公司需要考虑是否分红,分多少,而在非分红时间点一定不可分红.令 $$\tau :=\inf\{n\in{\Bbb N}_{0}:X_{n}<0\} $$ 是破产时间,且 \begin{equation}\label{VJ} V_{i}(x;\pi):=E_{(x,i)} \bigg[\sum_{n=0}^{\tau-1}e^{-\delta Z_{n}}f_{n}(X_{n})\bigg],~~ x\in{\Bbb R}_{+} \tag{2.13} \end{equation} 为策略$\pi=(f_{0},f_{1},\cdots )$下的期望折现分红总量. 其中$\delta>0$是折现率, $E_{(x,i)}[.]$为$X_{0}=x$,$J(0)=i$时$P$下的条件期望.

保险公司的值函数为 \begin{equation}\label{Value} V_{i}(x)=\sup_{\pi}V_{i}(x;\pi),~~x\in{\Bbb R}_{+}.\tag{2.14} \end{equation}

3 辅助马氏模型

为了利用马氏决策过程理论(详见文献[14])处理上述问题, 本节将构建一个辅助马氏调制模型. 令$X^{*}=(X_{n}^{*})_{n\in{\Bbb N}}$ 是一状态空间为$E^{*}=\{(k,i);k=0,1,i\in E_{J}\}$的马氏链, 其转移矩阵${\rm P}=(p_{(k,i)(k',j)})_{k,k'=0,1;i,j\in E_{J}}$, \begin{equation}\label{Tr1} p_{(k,i)(1,j)}=p_{ij}^{(1)},~~k=0,1, \tag{3.1} \end{equation} \begin{equation}\label{Tr2} p_{(k,i)(0,j)}=p_{ij}^{(0)},~~k=0,1.\tag{3.2} \end{equation} $X^{*}$描述了在随机观察时间点上的经济状态和分红机会, $k=0$表示该时间点是一个观测时间点但没有分红机会, $k=1$ 表示该时间点是一个观测时间点且有分红机会,$i,j\in E_{J}$描述经济状态. 问题(2.14)可描述为下面的平稳马氏决策模型:

$ \bullet \tilde E: = [0,\infty ) \times {E^*}, (x,(k,i)) \in \tilde E;$

$\bullet$ $A_{(k,i)}:={\Bbb R}_{+}$,$a_{(k,i)}\in A_{(k,i)}$是状态 $(k,i),k=0,1,i\in E_{J}$时的分红支付;

$ \bullet {D_{(k,i)}} \subset \tilde E \times {A_{(k,i)}};$

$ \bullet {D_{(k,i)}}(x) = [0,x],x \geqslant 0$是盈余为$x$,状态为$(k,i),k=0,1,i\in E_{J}$时的策略集;

$\bullet r_{(k,i)}(x,a_{(k,i)})=:a_{(k,i)}$是盈余为$x$, 状态为$(k,i),k=0,1,i\in E_{J}$时单阶段回报;

$\bullet Q_{i}$是(2.10)式中$R_{n}$和$T_{n}$的联合分布, 则转移核为 $Q(B\times\{(k',j)\}|(x,(k,i),a_{(k,i)}))= p_{(k,i)(k',j)}Q_{i}(x-a_{(k,i)}+R_{n}\in B)$,$i,j\in E_{J}$, $k,k'=0,1$,$B\in{\cal B}({\Bbb R})$.

在辅助马氏调制模型中,分红策略为$\tilde{\pi}=(h_{0},h_{1},\cdots )$, $h_{n}:\tilde{E}\to R_{+}$可测且$h(x,(k,j))\in D_{(k,j)}(x),k=0,1$. 受控盈余过程$(X_{n})$可表示为 \begin{equation} X_{n}=X_{n-1}-h_{n}(X_{n-1},X_{n-1}^{*})+R_{n}.\tag{3.3} \end{equation} 令$E_{(x,(k,i))}$表示$(x,(k,i))\in \tilde{E}$时概率$P$下的期望. 则期望折现分红总量为 \begin{equation} V(x,(k,i);\tilde{\pi})=E_{(x,(k,i))}\bigg[\sum_{n=0}^{\tau-1} e^{-\delta Z_{n}}h_{n}(X_{n},X_{n}^{*})\bigg],~~k=0,1, \tag{3.4} \end{equation} 其中 \begin{equation}\label{nf} h_{n}(X_{n},X_{n}^{*})=\left\{\begin{array}{ll}0,& k=0 ,\\ g_{n}(X_{n},J(Z_{n})),~~& k=1, \end{array}\right. \tag{3.5} \end{equation} $g_{n}$由(2.12)式定义. 则(2.13)式中的$V_{i}(x;\pi)$可表示为 \begin{equation}\label{nV} V_{i}(x;\pi)=\left\{\begin{array}{ll}V(x,(0,i);\tilde{\pi}),~~& k=0,\\ V(x,(1,i);\tilde{\pi}),& k=1.\end{array}\right. \tag{3.6} \end{equation}

最优化问题(2.14)可描述为 \begin{equation}\label{nValue} V_{i}(x)=\left\{\begin{array}{ll}V(x,(0,i)),~~& k=0,\\ V(x,(1,i)),& k=1, \end{array}\right.\tag{3.7} \end{equation} 其中$V(x,(k,i))=\sup\limits_{\tilde{\pi}}V(x,(k,i);\tilde{\pi}),k=0,1$ 是辅助马氏调制模型中的值函数.

4 值函数的性质

令$E_{i}[.]$表示$J(0)=i$时$P$下的条件期望, $R^{i}$表示$Z_{n}=i$时盈余过程在$Z_{n}$到$Z_{n+1}$上的增量, $$x^{+}:=\max(0,x),~~ \beta_{i}=:E[e^{-\delta T^{i}}],~~ C_{i}=:E[e^{-\delta T^{i}}R^{i+}], $$ $$ C=:\max_{i}E[e^{-\delta T^{i}}R^{i+}],~~ \beta=:\max_{i}E[e^{-\delta T^{i}}], $$ $$ C'=:\min_{i}\bigg(\sum_{j}p_{ij}^{(1)}\bigg)E[e^{-\delta T^{i}}R^{i+}],~~ \beta'=:\min_{i}\bigg(\sum_{j}p_{ij}^{(1)}\bigg)P_{i}[R\geq 0]E[e^{-\delta T^{i}}].$$

定义$M:=\{v:\tilde{E}\to {\Bbb R}_{+}$可测$\}$上的算子${\cal T}_{0}$为 \[\begin{align} & {{T}_{0}}v(x,(k,i))=\underset{{{a}_{(k,i)}}\in [0,x]}{\mathop{\sup }}\,\{\sum\limits_{{k}'=0}^{1}{\sum\limits_{j\in {{E}_{J}}}{{{p}_{(k,i)({k}',j)}}}}\int_{0}^{+\infty }{\int_{{{a}_{(k,i)}}-x}^{+\infty }{{{e}^{-\delta t}}}} \\ & \times v(x-{{a}_{(k,i)}}+r,({k}',j)){{Q}_{i}}(\text{d}r,\text{d}t)\}. \\ \tag{4.1}\end{align}\]

定理 4.1  a)~ 对任意$(k,i)\in E^{*}$,函数 $b(x,(k,i)):=1+x,x\geq 0;$ $b(x,(k,i)):=0,$ $x<0$是边界函数且满足 \begin{equation}\label{T01} {\cal T}_{0}^{n}b(x,(k,i))\leq\beta_{i}^{n}b(x,(k,i))+n\beta_{i}^{n-1}C_{i}.\tag{4.2} \end{equation}

b)~ (3.7)式中的值函数满足 \begin{equation}\label{bv1} x+\frac{C'}{1-\beta'}\leq V(x;(1,i))\leq x+\frac{C}{1-\beta},~~i\in E_{J}, x\in {\Bbb R}_{+}, \tag{4.3} \end{equation} \begin{equation}\label{bv2} x\sum_{j\in E_{J}}p_{ij}^{(1)}+\frac{C'}{1-\beta'}\leq V(x;(0,i))\leq V(x;(1,i)), ~~ x\in {\Bbb R}_{+}.\tag{4.4} \end{equation}

  对 $x>0$ \begin{eqnarray} {\cal T}_{0}b(x,(k,i))&=&\sup_{a_{(k,i)}\in[0,x]} \bigg\{\sum_{k'=0}^{1}\sum_{j\in E_{J}}p_{(k,i)(k'.j)}\int_{0}^{+\infty} \int_{a_{(k,i)}-x}^{+\infty}e^{-\delta t} \\ &&\times(1+x-a_{(k,i)}+r)Q_{i}({\rm d}r,{\rm d}t)\bigg\} \\ &=&\sup_{a_{(k,i)}\in[0,x]}\int_{0}^{+\infty}\int_{a_{(k,i)}-x}^{+\infty} e^{-\delta t}(1+x-a_{(k,i)}+r)Q_{i}({\rm d}r,{\rm d}t) \\ &\leq&\int_{0}^{+\infty}\int_{-\infty}^{+\infty}e^{-\delta t}(1+x)Q_{i} ({\rm d}r,{\rm d}t)+\int_{0}^{+\infty}\int_{0}^{+\infty} e^{-\delta t}rQ_{i}({\rm d}r,{\rm d}t) \\ &=&(1+x)E[e^{-\delta T^{i}}]+E[e^{-\delta T^{i}}R^{i+}] \\ &=&(1+x)\beta_{i}+C_{i}.\tag{4.5} \end{eqnarray} 通过迭代得证.

b)~ 将$R_{n}^{i}$换为$R_{n}^{i+}$,因为$R_{n}^{i+}\geq 0$,保险公司永远不会破产, 故最优方案是立刻支付,因此 \begin{eqnarray} V(x,(k,i))&\leq& x+\sum_{j_{1}\in E_{J}}p_{ij_{1}}^{(1)}E_{i} [e^{-\delta T_{1}}R_{1}^{+}] \\ &&+\sum_{j_{1},j_{2}\in E_{J}}p_{ij_{1}}^{(0)}p_{j_{1}j_{2}}^{(1)} E_{i}[e^{-\delta T_{1}}]E_{j_{1}}[e^{-\delta T_{2}}R_{1}^{+}] \\ &&+\sum_{j_{1},j_{2},j_{3}\in E_{J}}p_{ij_{1}}^{(0)}p_{j_{1}j_{2}}^{(0)} p_{j_{2}j_{3}}^{(1)}E_{i}[e^{-\delta T_{1}}] E_{j_{1}} [e^{-\delta T_{2}}]E_{j_{2}}[e^{-\delta T_{3}}R_{1}^{+}]+\cdots \\ &&+\sum_{k=0}^{1}\sum_{j_{1},j_{2}\in E_{J}}p_{ij_{1}}^{(k)}p_{j_{1}j_{2}}^{(1)} E_{i}[e^{-\delta T_{1}}]E_{j_{1}}[e^{-\delta T_{2}}R_{2}^{+}] \\ &&+\sum_{k=0}^{1}\sum_{j_{1},j_{2},j_{3}\in E_{J}} p_{ij_{1}}^{(k)} p_{j_{1}j_{2}}^{(0)}p_{j_{2}j_{3}}^{(1)}E_{i}[e^{-\delta T_{1}}] E_{j_{1}}[e^{-\delta T_{2}}]E_{j_{2}}[e^{-\delta T_{3}}R_{2}^{+}]+\cdots \\ &&+\cdots \\ &\leq&x+C\bigg[\sum_{j_{1}\in E_{J}}p_{ij_{1}}^{(1)}+\sum_{j_{1},j_{2}\in E_{J}}p_{ij_{1}}^{(0)}p_{j_{1}j_{2}}^{(1)} +\sum_{j_{1},j_{2},j_{3}\in E_{J}} p_{ij_{1}}^{(0)}p_{j_{1}j_{2}}^{(0)} p_{j_{2}j_{3}}^{(1)}+\cdots\bigg] \\ && +C\beta\bigg[\sum_{k=0}^{1}\sum_{j_{1},j_{2}\in E_{J}}p_{ij_{1}}^{(k)} p_{j_{1}j_{2}}^{(1)}+\sum_{k=0}^{1}\sum_{j_{1},j_{2},j_{3}\in E_{J}} p_{ij_{1}}^{(k)}p_{j_{1}j_{2}}^{(0)}p_{j_{2}j_{3}}^{(1)}\cdots \bigg] \\ &&+…\\ &\leq &x+C+\beta C+\beta^{2}C+\cdots =x+\frac{C}{1-\beta}.\tag{4.6} \end{eqnarray} 考虑策略$\tilde{\pi}=(h,h,\cdots )$,其中 \begin{equation}h=h(x,(k,i))=\left\{\begin{array}{ll}0,& k=0,\\ x^{+},~~& k=1. \end{array}\right. \tag{4.7} \end{equation} 则 \begin{eqnarray} V(x,(1,i);\tilde{\pi})&\geq&x+\sum_{j_{1}\in{E_{J}}}p_{ij_{1}}^{(1)}E_{i} [e^{-\delta T_{1}}R_{1}^{+}] \\ &&+\sum_{j_{1},j_{2}\in{E_{J}}}p_{ij_{1}}^{(1)}p_{j_{1}j_{2}}^{(1)}P_{i} (R_{1}>0)E_{i}[e^{-\delta T_{1}}]E_{j_{1}}[e^{-\delta T_{2}}R_{2}^{+}] \\ &&+ \sum_{j_{1},j_{2},j_{3}\in{E_{J}}}p_{ij_{1}}^{(1)}p_{j_{1}j_{2}}^{(1)} p_{j_{2}j_{3}}^{(1)}P_{i}(R_{1}>0) P_{j_{1}}(R_{2}>0) \\ &&\times E_{i}[e^{-\delta T_{1}}]E_{j_{1}}[e^{-\delta T_{2}}] E_{j_{2}}[e^{-\delta T_{3}}R_{3}^{+}] \\ &&+\cdots \\ &\geq&x+C'+\beta'C'+ \beta'^{2}C'+\cdots =x+\frac{C'}{1-\beta}, \tag{4.8} \end{eqnarray} \begin{eqnarray} V(x,(0,i);\tilde{\pi})&\geq&\sum_{j_{1}\in{E_{J}}}p_{ij_{1}}^{(1)}(x+E_{i} [e^{-\delta T_{1}}R_{1}^{+}]) \\ &&+\sum_{j_{1},j_{2}\in{E_{J}}}p_{ij_{1}}^{(1)}p_{j_{1}j_{2}}^{(1)}P_{i}(R_{1}>0)E_{i}[e^{-\delta T_{1}}]E_{j_{1}}[e^{-\delta T_{2}}R_{2}^{+}] \\ &&+ \sum_{j_{1},j_{2},j_{3}\in{E_{J}}}p_{ij_{1}}^{(1)} p_{j_{1}j_{2}}^{(1)}p_{j_{2}j_{3}}^{(1)}P_{i}(R_{1}>0) P_{j_{1}}(R_{2}>0) \\ &&\times E_{i}[e^{-\delta T_{1}}]E_{j_{1}}[e^{-\delta T_{2}}]E_{j_{2}} [e^{-\delta T_{3}}R_{3}^{+}] \\ &&+\cdots\\ &\geq& x\sum_{j\in E_{J}}p_{ij}^{(1)}+\frac{C'}{1-\beta'}. \tag{4.9} \end{eqnarray} 证毕.

令$M_{b}:=\{v\in M:$存在$c>0$有$v\leq cb \}$,显然$V(.,(k,i))\in M_{b}$.

定理 4.2  $\{V(.,(k,i)),k=1,2,i\in E_{J}\}$满足贝尔曼方程 \begin{eqnarray} \label{Bellman} V(x,(k,i))&=&\max_{a_{(k,i)}\in [0,x]}\bigg\{a_{(k,i)} +\sum_{k'=0,1}\sum_{j\in{E_{J}}}p_{(k,i)(k',j)} \\ &&\times \int_{0}^{+\infty}\int_{a_{(k,i)}}^{+\infty} e^{-\delta t}V(x-a_{(k,i)}+r,(k',j))Q_{i}({\rm d}r,{\rm d}t)\bigg\}, \\ && x\in{\Bbb R}_{+},i\in E_{J},k=0,1.\tag{4.10} \end{eqnarray} $\{V(.,(k,i)),k=1,2,i\in{E_{J}}\}$存在,最优策略为 \begin{equation} h_{i}^{*}=h^{*}(.,(k,i))=\left\{\begin{array}{ll}0,&k=0,\\ g^{*}(.,i),~~& k=1, \end{array}\right. \tag{4.11} \end{equation} 其中$g^{*}(.,i)$是在经济状态为$i$时分红支付点上的最优策略.

  由定理4.1 a) $\lim\limits_{n\to\infty}{\cal T}_{0}^{n}b=0$, 又 $D_{i}(x)=[0,x]$紧,映射$x\to D_{i}(x)$连续, $(x,a_{(k,i)})\to r_{(k,i)}(x,a_{(k,i)})=a_{(k,i)}$连续,$v\in M_{b}$连续,故 $$(x,a_{(k,i)})\to \int_{0}^{+\infty}\int_{a_{(k,i)}-x}^{+\infty} e^{-\delta t}v(x-a_{(k,i)}+r,(k',j))Q_{i}({\rm d}r,{\rm d}t)$$ 连续. 由文献[14,定理7.2.1]得证.

下面的两个定理给出了辅助马氏调制模型中值函数的基本性质.

定理 4.3  值函数$\{V(.,(k,i)),k=1,2,i\in{ E_{J}}\}$有下面的性质: a)~ $V(.,(k,i))$是增函数且$V(x,(1,i))-V(y,(1,i))\geq x-y,x\geq y\geq 0$.

b)~ 对$x\geq 0 $,$g^{*}(x-g^{*}(x,i),i)=0$ 且 \begin{equation}\label{f*1} V(x,(1,i))-g^{*}(x,i)=V(x-g^{*}(x,i),(1,i)).\tag{4.12} \end{equation}

  a)~ 令 \begin{equation}\label{G} G(x;(1,i),(k',j))=\int_{0}^{+\infty}\int_{a_{(k,i)}-x}e^{-\delta t} V(x+r,(k',j))Q_{i}({\rm d}r,{\rm d}t),x\in {\Bbb R}_{+}, \tag{4.13} \end{equation} 对$k=1$,贝尔曼方程为 \begin{equation}\label{Bellman2} V(x,(1,i))=\sup_{a_{(1,i)}\in[0,x]}\bigg\{a_{(1,i)}+\sum_{k=0}^{1} \sum_{j\in E_{J}}p_{(1,i)(k,j)}G(x-a_{(1,i)};(1,i),(k,j))\bigg\}, \tag{4.14} \end{equation} 显然$V(.,(k,i))$是增函数. 令$0\leq y\leq x$, \begin{eqnarray} V(x,(1,i))&=&\sup_{a_{(1,i)}\in[0,x]}\bigg\{a_{(1,i)}+ \sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)}G(x-a_{(1,i)};(1,i),(k,j))\bigg\} \\ &\geq&\sup_{a_{(1,i)}\in[0,y]}\bigg\{x-y+a_{(1,i)}+ \sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)}G(y-a_{(1,i)};(1,i),(k,j))\bigg\} \\ &=&(x-y)+\sup_{a_{(1,i)}\in[0,y]}\bigg\{a_{(1,i)}+ \sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)}G(y-a_{(1,i)};(1,i),(k,j))\bigg\} \\ &=&(x-y)+V(y,(1,i)).\tag{4.15} \end{eqnarray}

b)~ 由贝尔曼方程 \begin{equation} V(x,(1,i))=g^{*}(x,i)+\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)} G(x-g^{*}(x,i);(1,i),(k,j)), \tag{4.16} \end{equation} \begin{eqnarray} V(x-g^{*}(x,i),(1,i))&=&\sup_{a_{(1,i)\in[0,x-g^{*}(x,i)]}} \bigg\{a_{(1,i)} +\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)} \\ &&\times G(x-g^{*}(x,i)-a_{(1,i)};(1,i),(k,j))\bigg\} \\ &\geq&\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)} G(x-g^{*}(x,i);(1,i),(k,j)) \\ &=&V(x,(1,i))-g^{*}(x,i).\tag{4.17} \end{eqnarray} 由a)得 $V(x,(1,i))-V(x-g^{*}(x,i),(1,i))\geq g^{*}(x,i), $ 因此 $V(x-g^{*}(x,i),(1,i))+g^{*}(x,i)=V(x,(1,i)), $ 则 $$V(x-g^{*}(x,i),(1,i))=\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)} G(x-g^{*}(x,i);(1,i),(k,j)).$$ 比较(4.14)式得$g^{*}(x-g^{*}(x,i),i)=0$. 若$g^{*}(x-g^{*}(x,i),i)>0$,由定义得 \begin{eqnarray} V(x-g^{*}(x,i),(1,i))&=&g^{*}(x-ug^{*}(x,i),i)+\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)} \\ &&\times G(x-g^{*}(x,i)-g^{*}(x-g^{*}(x,i),i);(1,i),(k,j)).\tag{4.18} \end{eqnarray} 由假设在状态$(x,(1,i))$下支付$g^{*}(x,i)+g^{*}(x-g^{*}(x,i),i)$是最合理的操作,则我们得到 \begin{eqnarray} &&g^{*}(x,i)+ g^{*}(x-g^{*}(x,i),i) \\ &&+\sum_{k=0}^{1}\sum_{j\in E_{J}}G(x-g^{*}(x,i)-g^{*}(x-g^{*}(x,i),i);(1,i),(k,j)) \\ &=&g^{*}(x,i)+V(x-g^{*}(x,i),(1,i)) \\ &=&V(x,(1,i))=g^{*}(x,i)+\sum_{k=0}^{1}\sum_{j\in E_{J}}G(x-g^{*}(x,i);(1,i)(k,j)), \tag{4.19} \end{eqnarray} 故$g^{*}(x,i)+ g^{*}(x-g^{*}(x,i),i)$是 (4.14)式的最大值点,与$g^{*}(x,i)$为最大值点矛盾, 故$g^{*}(x-g^{*}(x,i),i)=0$.

5 最优策略

本节证明最优策略是band策略.

定理 5.1  令$\xi_{i}=\sup\{x\in{\Bbb R}_{+}|g^{*}(x,i)=0\}$. 则对任意$x>\xi_{i}$, 有$\xi_{i} <\infty$且$g^{*}(x,i)=x-\xi_{i}$.

  当$x>0$,$g^{*}(x,i)=0$,由定理4.1可得上界 \begin{eqnarray} V(x,(1,i))&=&\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)}G(x-g^{*}(x,i);(1,i),(k,j)) \\ &=&\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)} E[e^{-\delta T^{i}}V(x+R^{i},(k,j))I_{\{R^{i}\geq -x\}}] \\ &\leq&\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)} E\bigg[e^{-\delta T^{i}}(x+R^{i}+\frac{c}{1-\beta_{i}})I_{\{R^{i}\geq -x\}}\bigg] \\ &\leq&x\beta_{i}+C+\frac{C}{1-\beta_{i}}.\tag{5.1} \end{eqnarray} 同理 $$V(x,(1,i))>x+\frac{C'}{1-\beta'}.$$ 故 \begin{equation} x\leq \frac{C}{(1-\beta_{i})^{2}}-\frac{C'}{(1-\beta')(1-\beta_{i})}.\tag{5.2} \end{equation} 因此$\xi_{i}$是有限的.

假设$g^{*}(\xi_{i},i)>0$. 由$\xi_{i}$的定义可知存在$\varepsilon\in(0,g^{*}(\xi_{i},i))$ 使得$g^{*}(\xi_{i}-\varepsilon,i)=0$. 当盈余价值为$\xi_{i}-\varepsilon$时, $g^{*}(\xi_{i},i)-\varepsilon$是一个可行支付,可得 \begin{eqnarray} &&g^{*}(\xi_{i},i)-\varepsilon+\sum_{k=0}^{1}\sum_{j\in E_{J}} p_{(1,i)(k,j)}G(\xi_{i}-\varepsilon-g^{*}(\xi_{i},i)+\varepsilon;(1,i),(k,j)) \\ &=&g^{*}(\xi_{i},i)-\varepsilon+\sum_{k=0}^{1}\sum_{j\in E_{J}} p_{(1,i)(k,j)}G(\xi_{i}-g^{*}(\xi_{i},i);(1,i),(k,j)).\tag{5.3} \end{eqnarray} 由定理4.3得 \begin{eqnarray} &&g^{*}(\xi_{i},i)+\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)} G(\xi_{i}-g^{*}(\xi_{i},i);(1,i),(k,j)) \\ &\geq&\varepsilon+\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)} G(\xi_{i}-\varepsilon;(1,i),(k,j)), \tag{5.4} \end{eqnarray} 则 \begin{eqnarray} &&g^{*}(\xi_{i},i)-\varepsilon+\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)} G(\xi_{i}-\varepsilon-g^{*}(\xi_{i},i)+\varepsilon;(1,i),(k,j)) \\ &\geq&\varepsilon+\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)} G(\xi_{i}-\varepsilon;(1,i),(k,j)). \tag{5.5} \end{eqnarray} 故在状态$(\xi_{i}-\varepsilon,(1,i))\in \tilde{E}$,$0$是最优支付, $V(\xi_{i},(1,i))-\varepsilon=V(\xi_{i}-\varepsilon,(1,i))$表明 $g^{*}(\xi_{i}-\varepsilon,i)\geq g^{*}(\xi_{i},i)-\varepsilon>0$, 矛盾,故$g^{*}(\xi,i)=0.$

令$x\geq \xi_{i}$. 由定理4.3可知$g^{*}(x-g^{*}(x,i),i)=0$, 由$\xi_{i}$的定义可知$g^{*}(x,i)\geq x-\xi_{i}$. 由于$x-g^{*}(x,i)\leq \xi_{i}\leq x$,在状态$(\xi_{i},(1,i))$支付$g^{*}(x,i)-(x-\xi_{i})$是允许的,因此 \begin{eqnarray} \label{V*} V(\xi_{i},(1,i))&\geq & g^{*}(x,i)-(x-\xi_{i})+ \sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)}G(x-g^{*}(x,i),(k,j)) \\ &=&V(x,(1,i))-(x-\xi)\geq V(x,(1,i)), \tag{5.6} \end{eqnarray} 则 \begin{equation} 0=g^{*}(\xi_{i},i)\geq g^{*}(x,i)-(x-\xi_{i}).\tag{5.7} \end{equation} 又由于$0\leq g^{*}(x,i)-(x-\xi_{i})$,故$g^{*}(x,i)=x-\xi_{i}.$

定理 5.2  $(h_{i_{1}}^{*},h_{i_{2}}^{*},\cdots )$是平稳最优策略, \begin{equation}h_{i}^{*}=h^{*}(x,(k,i))= \left\{\begin{array}{ll}0,&k=0,\\ g^{*}(x,i),~~& k=1, \end{array}\right. \tag{5.8} \end{equation} 且$g^{*}(x,i)$是band策略.

  由定理5.1对$x>\xi_{i}$,$g^{*}(x,i)=x-\xi_{i}$.令$0\leq y <x\leq \xi_{i}$, \begin{eqnarray} V(x,(1,i))&=&\sup_{a_{(1,i)}\in[0,x]} \bigg\{a_{(1,i)}+\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)}G(x-a_{(1,i)};(1,i),(k,j)) \bigg\} \\ &\geq& x-y+ \sup_{a_{(1,i)}\in[0,y]} \bigg\{a_{(1,i)}+\sum_{k=0}^{1}\sum_{j\in E_{J}}p_{(1,i)(k,j)}G(y-a_{(1,i)};(1,i),(k,j))\bigg\}. \tag{5.9}\end{eqnarray} 令$g^{*}(x',i)=\sup\limits_{0\leq x\leq \xi_{i}}g^{*}(x,i)$. 由于$g^{*}(x,i)$上半连续, 故最大值可取到. 若$g^{*}(x',i)=0$,门槛策略是最优策略. 假设$g^{*}(x',i)>0$, 则在$[x'-g^{*}(x',i),x')$上$g^{*}(x,i)=x-x'+g^{*}(x',i)$最优,在余集 $[0,\xi_{i}] \diagdown[x'-g^{*}(x',i),x']$上寻找下一个最大值点, 重复这一操作从而构建band策略.

定理5.2说明最优策略是平稳的且包含两部分,如果观测时间点不是分红点, 最优策略是分红量为$0$,如果观测时间点是分红点,最优策略是band策略, 且在不同的经济环境下,band策略有不同的波.

定理 5.3  对$i\in E_{J}$,当最大值$g^{*}(x,i)$唯一时,在分红时间点最优策略是门槛策略.

参考文献
[1] Finetti B De. Su un' impostazione alternativa della teoria collettiva del rischio. Transactions of the XVth Congress of Actuaries, 1957, 2:433-443
[2] Gao S, Liu Z M. The perturbed compound Poisson risk model with constant interest and a threshold strategy. Journal of Computational and Applied Mathematics, 2010, 233:2181-2188
[3] Lin S X, Pavlova K P. The compound Poisson risk model with a threshold dividend strategy. Insurance Math Econom, 2006, 38:57-80
[4] Chen X, Ou H. A compound Poisson model with proportional investment. Journal of Computational and Applied Mathematics, 2013, 242:248-260
[5] Loeffen R, Renaud J. De Fineti's optimal dividends problem with an affine penalty function at ruin. Insurance Math Econom, 2010, 46(1):98-108
[6] Albrecher H, Cheung E C K, Thonhauser S. Randomized observation periods for the compound Poisson risk model:the discounted penalty function. Scandinavian Actuarial Journal, 2013, 2013(6):424-452
[7] Albrecher H, Cheung E C K, Thonhauser S. Randomized observation periods for the compound Poisson risk model:Dividends. ASTIN Bulletion, 2011, 41(2):645-672
[8] Albrecher H, Bäuerle N, Thonhauser S. Optimal dividend-payout in random discrete time. Statistics and Risk Modeling, 2011, 28:251-276
[9] Cheung C K Eric, Landriault D. Perturbed MAP risk models with dividend barrier strategies. Journal of Applied Probability, 2009, 46(2):521-541
[10] Cheung C K Eric, Landriault D. A generallized penalty function with the maximum surplus prior to ruin in a MAP risk model. Insurance:Mathematics and Economics, 2010, 46(1):127-134
[11] Zhang Z, Yang H L, Yang H. On the absolute ruin in a MAP risk model with debit interest. Advances in Applied Probability, 2011, 43(1):77-96
[12] Mitric I R, Badescu A L, Stanford D A. On the absolute ruin problem in a Sparre Andersen risk model with constant interest. Insurance:Mathematics and Economics, 2012, 50:167-178
[13] Salah Z B, Morales M. Lévy systems and the time value of ruin for Markov additive processes. European Actuarial Journal, 2012, 2(2):289-317
[14] Bäuerler N, Rieder U. Markov Dicision Processes with Applications to Finance. New York:Springer, 2011