数学物理学报  2016, Vol. 36 Issue (1): 157-167   PDF (310 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
罗婷
朱传喜
半序概率度量空间中压缩条件下相容映射的三元重合点与三元不动点定理
罗婷1,2, 朱传喜1    
1 南昌大学数学系 南昌 330031;
2 南昌工学院民族教育学院 南昌 330108
摘要: 在半序概率度量空间中建立了映射对G:X×X×XXg:XX的相容性概念.在不需要可交换的条件下,研究了相容映射在满足更一般的非线性压缩条件下的三元重合点与三元不动点问题,所得结果推广了已有文献中的二元重合点与二元公共不动点定理.最后,给出主要结果的一个具体应用.
关键词: 概率度量空间     三元重合点     三元不动点     半序集     混合g-单调映射    
Tripled Coincidence and Tripled Fixed Point Theorems for Compatible Mappings Under Contractive Conditions in Partially Ordered Probabilistic Metric Spaces
Luo Ting1,2, Zhu Chuanxi1    
1 Department of Mathematics, Nanchang University, Nanchang 330031;
2 College of Ethnic Education, Nanchang Institute of Science & Technology, Nanchang 330108
Abstract: In this paper, we establish the notion of compatibility for a pair of mappings G:X×X×XX and g:XX in partially ordered probabilistic metric spaces. Under not necessary commutative conditions, some tripled coincidence and tripled common fixed point problems of compatible mappings satisfying a more general nonlinear contractive condition are studied. The obtained results generalize some coupled common fixed point theorems in the corresponding literatures. Finally, an example is given to illustrate our main results.
Key words: Probabilistic metric space     Tripled coincidence point     Tripled fixed point     Partially ordered set     Mixed g-monotone mapping    

1 引言

1942年,Menger在文献[1]提出了概率度量空间的概念. 1972年, Sehgal和Bharucha-Reid在文献[5]中建立了概率度量空间中的不动点理论. 众所周知, 度量空间中的压缩不动点理论(见文献[1, 2, 3, 4, 5, 6, 7, 8, 9])为半序度量空间中的不动点理论的研究奠定了基础. 文献[9, 10, 11, 12, 13, 14, 15]研究了半序度量空间中二元重合点与公共不动点.随后,Borcut在文献[16, 17]中将半序度量空间中的二元重合点与公共不动点定理推广到了三元. 最近在文献[15]中,胡新启和马晓燕在半序概率度量空间中得到可交换映射的二元重合点定理.本文在半序概率度量空间中建立了映射对$G:X\times X\times X\rightarrow X$与 $g:X\rightarrow X$的相容性概念. 在不需要可交换的条件下, 研究了在满足更一般压缩条件下的相容映射的三元重合点与三元不动点问题, 所得结果推广了文献[18] 中的二元重合点与二元公共不动点定理. 最后,我们给出主要结果的一个具体应用.

2 预备知识

先回顾如下概念.

设${\Bbb R}$表示全体实数所成集合,${{\Bbb R}^ + }$表示全体非负实数所成集合, ${\Bbb N}$表示全体自然数所成集合.

映像$f:{\Bbb R} \to {{\Bbb R}^ + }$称为分布函数,如果它是非减的、左连续的, 且满足条件 $$\mathop {\inf }\limits_{t \in R} f(t) = 0, \mathop {\sup }\limits_{t \in R} f(t) = 1.$$

用$D$表示一切分布函数所成集合,$H(t)$表示如下定义的特殊分布函数 $$H(t) = \left\{ {\matrix{ {0, t \le 0,} \cr {1, t0.} \cr } } \right.$$ 映射$\Delta :[0, 1] \times [0, 1] \to [0, 1]$称为三角范数(简称为$t$ -范数), 如果它满足如下条件: 对一切的$a,b,c,d \in [0, 1]$,有

($\Delta$-1) $\Delta(a,1)=a,$ $\Delta(0,0)=0;$

($\Delta$-2) $\Delta(a,b)=\Delta(b,a);$

($\Delta$-3) $a\geq b,c\geq d\Rightarrow \Delta(a,c)\geq \Delta(b,d);$

($\Delta$-4) $\Delta(a,\Delta(b,c))=\Delta(\Delta(a,b),c).$

其中$\Delta_p(a,b)=ab$与$\Delta_M(a,b)=\min(a,b)$都是典型的连续$t$ -范数.

$t$ -范数$\Delta$称为$H$ -型的,如果序列函数$\{\triangle^n(x)\}_{n\in N}$ 在$x=1$处是等度连续的,其中$\Delta^1(x)=\Delta(x,x)$,$\Delta^n(x)=\Delta(x, \Delta^{n-1}(x)),n \in N,x\in[0, 1]$.

定义2.1[1, 2]Menger概率度量空间(简称为Menger PM -空间)是一三元组$(X,F,\Delta )$,其中$X$是一抽象集,$\Delta $为$t$ -范数, $F$是$X \times X$到$D$的映象(记分布函数$F(x,y)$为${F_{x,y}}$, 而${F_{x,y}}(t)$表示${F_{x,y}}$在$t \in R$的值),并且假定${F_{x,y}}, x,y \in X$满足下面的条件:

(PM-1)~ ${F_{x,y}}(t) = H(t),\forall t \in R,$ 当且仅当$x=y$;

(PM-2)~ 对任意的$x,y\in X,t\in R$,有${\rm{}}{F_{x,y}}(t) = {F_{y,x}}(t);$

(PM-3)~ 对任意的$x,y,z \in X,{t_1},{t_2}\geq 0$,有$ {F_{x,z}}({t_1} + {t_2}) \ge \Delta ({F_{x,y}}({t_1}),{F_{y,z}}({t_2})).$

定义 2.2[18]分布函数$F_1$和$F_2$的代数和$F_1\oplus F_2$定义为 $$ (F_1\oplus F_2)(t)=\sup_{t_1+t_2=t}\min\{F_1(t_1),F_2(t_2)\}, \forall t\in R.$$

显然有 $$ (F_1\oplus F_2)(2t)\geq\min\{F_1(t),F_2(t)\}, \forall t>0.$$

注 2.1 Schweizer和Sclar在文献[2, 4]中指出,如果Menger PM -空间$(X,F,\Delta )$ 中$t$ -范数$\Delta$满足条件$\sup\limits_{0 <t<1}\Delta(t,t)=1$, 则$(X,F,\Delta )$是$(\varepsilon,\lambda)$ -邻域系所诱导的拓扑$\tau$下的Hausdorff拓扑空间 $$ \{U_x(\varepsilon,\lambda):\varepsilon>0,\lambda\in(0,1]\} (x\in X), $$ 其中$U_x(\varepsilon,\lambda)=\{y\in X:F_{x,y}(\varepsilon)>1-\lambda\}$.

根据$\tau$拓扑的性质,在Menger PM -空间$(X,F,\Delta )$中,序列$\{ {x_n}\} $ 称为$\tau$ - 收敛于${x} \in X$,如果对任意的$t>0$, 有$\lim\limits_{n\rightarrow\infty}F_{x_n,x}(t)=1$. $\{ {x_n}\} $ 称为$X$中的$\tau$- Cauchy列,如果对任意的$\varepsilon> 0$和 $\lambda> 0$,存在正整数$N = N(\varepsilon ,\lambda )$, 当$m,n \ge N$时有${F_{{x_m},{x_n}}}(\varepsilon ) > 1 - \lambda $.Menger PM -空间$(X,F,\Delta )$称为$\tau$ -完备的, 如果$X$中的每一$\tau$- Cauchy列都$\tau$ -收敛于$X$中的某一点.

定义 2.3[17]设$(X,\leq)$是一半序集, $G:X\times X\times X\rightarrow X,g:X\rightarrow X$. $G$称为具有$g$ -混合单调性质, 如果$G(x,y,z)$关于$x$ $g$ -单调不减,关于$y$ $g$ -单调不增,关于$z$ $g$ -单调不减, 即对任意的$x,y,z\in X$, $$ x_1,x_2\in X,g(x_1)\leq g(x_2)\Rightarrow G(x_1,y,z)\leq G(x_2,y,z); $$ $$ y_1,y_2\in X,g(y_1)\leq g(y_2)\Rightarrow G(x,y_1,z)\geq G(x,y_2,z); $$ $$ z_1,z_2\in X,g(z_1)\leq g(z_2)\Rightarrow G(x,y,z_1)\leq G(x,y,z_2).$$

定义 2.4[17]元素$(x,y,z)\in X\times X\times X$称为$G$与$g$的三元重合点, 如果 $$G(x,y,z)=g(x),~~G(y,x,y)=g(y),~~G(z,y,x)=g(z).$$

定义 2.5[16]设$(X,\leq)$是一半序集, $G:X\times X\times X\rightarrow X$. $G$称为具有混合单调性质, 如果$G(x,y,z)$关于$x$单调不减,关于$y$ 单调不增,关于$z$单调不减, 即对任意的$x,y,z\in X$, $$ x_1,x_2\in X,x_1\leq x_2\Rightarrow G(x_1,y,z)\leq G(x_2,y,z); $$ $$ y_1,y_2\in X,y_1\leq y_2\Rightarrow G(x,y_1,z)\geq G(x,y_2,z); $$ $$ z_1,z_2\in X,z_1\leq z_2\Rightarrow G(x,y,z_1)\leq G(x,y,z_2). $$

定义 2.6[16]元素$(x,y,z)\in X\times X\times X$称为映射 $G:X\times X\times X\rightarrow X$的三元不动点,如果 $$ G(x,y,z)=x,~~G(y,x,y)=y,~~G(z,y,x)=z.$$

定义2.7[12]设$(X,d)$是一度量空间, $G:X\times X\rightarrow X,g:X\rightarrow X$. 称$G$与$g$是相容的,如果 $$ \lim\limits_{n\rightarrow\infty}d(g(G(x_n,y_n)),G(g(x_n),g(y_n)))=0, $$ $$ \lim\limits_{n\rightarrow\infty}d(g(G(y_n,x_n)),G(g(y_n),g(x_n)))=0, $$ 其中$\{x_n\},\{y_n\}$是$X$中的序列,则对任意的$x,y\in X$,有 $$ \lim\limits_{n\rightarrow\infty}G(x_n,y_n)=\lim\limits_{n\rightarrow\infty}g(x_n)=x, $$ $$\lim\limits_{n\rightarrow\infty}G(y_n,x_n)=\lim\limits_{n\rightarrow\infty}g(y_n)=y.$$

定义$\Phi=\{\phi: {\Bbb R}^+\rightarrow {\Bbb R}^+\}$,其中$\phi\in\Phi$满足下列条件:

(a)~ $\phi$严格增;

(b)~ $\phi$右上半连续;

(c)~ $\sum\limits_{n=0}\limits^\infty \phi^n(t)<+\infty,\forall t>0$, 其中$\phi^n(t)$是$\phi(t)$的第$n$次迭代.

易证如果$\phi\in\Phi$,则$\phi(t) <t,\forall t>0$.

引理 2.1[9]设$\{y_n\}$是Menger PM -空间$(X,F,\Delta )$ 中的序列,其中$t$ -范数$\Delta$是$H$ -型的. 如果存在函数$\phi\in\Phi$,使得对任意的$t>0,n\in N$,有 $$ F_{y_n,y_{n+1}}(\phi(t))\geq\min\{F_{y_{n-1},y_n}(t),F_{y_n,y_{n+1}}(t)\}, $$ 则$\{y_n\}$是$X$中的Cauchy列.

引理2.2[9]设$(X,F,\Delta )$是一个Menger PM -空间, 其中$t$ -范数$\Delta=\Delta_M,x,y\in X$. 如果存在$\phi\in\Phi$,使得对任意的$t>0$,有 $$ F_{x,y}(\phi(t)+0)\geq F_{x,y}(t), $$ 则$x=y$.

3主要结果

定义3.1  设$(X,\leq)$是一半序集, $(X,F,\Delta )$是一个完备的Menger PM -空间, $G:X\times X\times X\rightarrow X,$ $ g:X\rightarrow X$. 称$G$与$g$相容的, 如果对任意的$t>0$, $$ \lim\limits_{n\rightarrow\infty}F_{g(G(x_n,y_n,z_n)), G(g(x_n),g(y_n),g(z_n))}(t)=1, $$ $$ \lim\limits_{n\rightarrow\infty}F_{g(G(y_n,x_n,y_n)), G(g(y_n),g(x_n),g(y_n))}(t)=1, $$ $$ \lim\limits_{n\rightarrow\infty}F_{g(G(z_n,y_n,x_n)), G(g(z_n),g(y_n),g(x_n))}(t)=1, $$ 其中$\{x_n\},\{y_n\},\{z_n\}$是$X$中的序列,则对任意的$x,y,z\in X$,有 $$ \lim\limits_{n\rightarrow\infty}G(x_n,y_n,z_n)= \lim\limits_{n\rightarrow\infty}g(x_n)=x, $$ $$ \lim\limits_{n\rightarrow\infty}G(y_n,x_n,y_n)= \lim\limits_{n\rightarrow\infty}g(y_n)=y, $$ $$ \lim\limits_{n\rightarrow\infty}G(z_n,y_n,x_n)= \lim\limits_{n\rightarrow\infty}g(z_n)=z.$$

定理 3.1  设$(X,\leq)$是一半序集, $(X,F,\Delta )$是一个完备的Menger PM -空间,$t$ -范数$\triangle$是$H$ -型的. 设 $G:X\times X\times X\rightarrow X,g:X\rightarrow X$, 且$G$具有混合$g$ -单调性质. 设存在$\phi\in\Phi$, 使得对任意的$x,y,z,u,v,w\in X,t>0,\beta\in(0,1),\xi\in\{G(x,y,z),G(u,v,w)\}$,有 \begin{eqnarray} F_{G(x,y,z),G(u,v,w)}(\phi(t))&\geq& \min\Big\{F_{g(x),g(u)}(t),F_{g(x),G(x,y,z)}(t),F_{g(u),G(u,v,w)}(t), \\ && [F_{G(x,y,z),\xi}\oplus F_{\xi,G(u,v,w)}((2-\beta)t)]\Big\}, \tag{3.1}\end{eqnarray} 其中$g(x)\geq g(u),g(y)\leq g(v),g(z)\geq g(w)$ (或者$g(x)\leq g(u),g(y)\geq g(v),g(z)\leq g(w)$).

设$G(X\times X\times X)\subseteq g(X)$,$G$和$g$连续且是相容的, 并且$g$是单调不减的. 如果存在$x_0,y_0,z_0\in X$使得 $$ g(x_0)\leq G(x_0,y_0,z_0),~~g(y_0)\geq G(y_0,x_0,y_0),~~g(z_0)\leq G(z_0,y_0,x_0), $$ 则存在$x,y,z\in X$使得 $$ g(x)=G(x,y,z),~~g(y)=G(y,x,y),~~g(z)=G(z,y,x). $$ 即,$G$与$g$存在三元重合点.

  根据题意,存在$x_0,y_0,z_0\in X$使得 \begin{equation} g(x_0)\leq G(x_0,y_0,z_0),~~g(y_0)\geq G(y_0,x_0,y_0),~~g(z_0)\leq G(z_0,y_0,x_0).\tag{3.2} \end{equation} 由于$G(X\times X\times X)\subseteq g(X)$, 故存在$x_1,y_1,z_1\in X$使得对任意的$n\geq0$,有 \begin{equation} g(x_1)= G(x_0,y_0,z_0),~~g(y_1)= G(y_0,x_0,y_0),~~g(z_1)=G(z_0,y_0,x_0).\tag{3.3} \end{equation} 依此类推,存在$\{x_n\},\{y_n\},\{z_n\}\in X$使得对任意的$n\geq0$,有 \begin{equation} g(x_{n+1})= G(x_n,y_n,z_n),~~g(y_{n+1})= G(y_n,x_n,y_n),~~ g(z_{n+1})= G(z_n,y_n,x_n).\tag{3.4} \end{equation}

下面用数学归纳法证明,对任意的$n\geq0$,有 \begin{equation}g(x_n)\leq g(x_{n+1}),~~g(y_n)\geq g(y_{n+1}),~~g(z_n)\leq g(z_{n+1}). \tag{3.5} \end{equation} 事实上,由(3.2)式和(3.3)式可知 $$ g(x_0)\leq g(x_1),~~g(y_0)\geq g(y_1),~~g(z_0)\leq g(z_1).$$ 即(3.5)式对$n=0$成立. 假设(3.5)式对某一$n\geq0$成立,即 $$g(x_n)\leq g(x_{n+1}),~~g(y_n)\geq g(y_{n+1}),~~g(z_n)\leq g(z_{n+1}), $$ 由$G$是$g$ -混合单调算子,可得 $$ g(x_{n+1})= G(x_n,y_n,z_n)\leq G(x_{n+1},y_n,z_n)\leq G(x_{n+1},y_{n+1},z_{n+1})=g(x_{n+2}), $$ $$ g(y_{n+1})= G(y_n,x_n,y_n)\geq G(y_{n+1},x_n,y_n)\geq G(y_{n+1},x_{n+1},y_{n+1})=g(y_{n+2}), $$ $$ g(z_{n+1})= G(z_n,y_n,x_n)\leq G(z_{n+1},y_n,x_n)\leq G(z_{n+1},y_{n+1},x_{n+1})=g(z_{n+2}). $$ 由数学归纳法,(3.5)式对任意的$n\geq0$成立,即有 $$g(x_0)\leq g(x_1)\leq g(x_2)\leq\cdots\leq g(x_n)\leq g(x_{n+1})\leq\cdots, $$ $$ g(y_0)\geq g(y_1)\geq g(y_2)\geq\cdots\geq g(y_n)\geq g(y_{n+1})\geq\cdots, $$ $$ g(z_0)\leq g(z_1)\leq g(z_2)\leq\cdots\leq g(z_n)\leq g(z_{n+1})\leq\cdots. $$

在(3.1)式中令$x=x_{n-1},y=y_{n-1},z=z_{n-1},u=x_n,v=y_n,w=z_n$,可得 \begin{eqnarray*} && F_{G(x_{n-1},y_{n-1},z_{n-1}),G(x_n,y_n,z_n)}(\phi(t))\\ &\geq& \min\{F_{g(x_{n-1}),g(x_n)}(t),F_{g(x_{n-1}),G(x_{n-1},y_{n-1},z_{n-1})}(t), F_{g(x_n),G(x_n,y_n,z_n)}(t),\\ &&[(F_{G(x_{n-1},y_{n-1},z_{n-1}),\xi} \oplus F_{\xi,G(x_n,y_n,z_n)})(t+(1-\beta)t)]\}.\end{eqnarray*} 由(3.4)式可得 \begin{eqnarray} F_{g(x_n),g(x_{n+1})}(\phi(t))&\geq&\min\{F_{g(x_{n-1}),g(x_n)}(t), F_{g(x_{n-1}),g(x_n)}(t),F_{g(x_n),g(x_{n+1})}(t), \\ &&F_{g(x_n),g(x_{n+1})}(t),F_{g(x_{n+1}),g(x_{n+1})}((1-\beta)t)\} \\ &=&\min\{F_{g(x_{n-1}),g(x_n)}(t),F_{g(x_n),g(x_{n+1})}(t),1\} \\ &=&\min\{F_{g(x_{n-1}),g(x_n)}(t),F_{g(x_n),g(x_{n+1})}(t)\}(n\in N,t>0).\tag{3.6}\end{eqnarray} 由引理2.1可知,$\{g(x_n)\}$是$X$中的Cauchy列.

同理可证,$\{g(y_n)\}$与$\{g(z_n)\}$也是$X$中的Cauchy列.

因为$X$完备,故存在$x,y,z\in X$使得 \begin{equation}\lim\limits_{n\rightarrow\infty}G(x_n,y_n,z_n)= \lim\limits_{n\rightarrow\infty}g(x_n)=x,\tag{3.7} \end{equation} \begin{equation}\lim\limits_{n\rightarrow\infty}G(y_n,x_n,y_n)= \lim\limits_{n\rightarrow\infty}g(y_n)=y,\tag{3.8} \end{equation} \begin{equation}\lim\limits_{n\rightarrow\infty}G(z_n,y_n,x_n)= \lim\limits_{n\rightarrow\infty}g(z_n)=z.\tag{3.9} \end{equation} 又由于$g$连续,由(3.7)-(3.9)式可得 \begin{equation}\lim\limits_{n\rightarrow\infty}g(G(x_n,y_n,z_n))= \lim\limits_{n\rightarrow\infty}g(g(x_{n+1}))=g(x),\tag{3.10} \end{equation} \begin{equation}\lim\limits_{n\rightarrow\infty}g(G(y_n,x_n,y_n))= \lim\limits_{n\rightarrow\infty}g(g(y_{n+1}))=g(y),\tag{3.11} \end{equation} \begin{equation}\lim\limits_{n\rightarrow\infty}g(G(z_n,y_n,x_n))= \lim\limits_{n\rightarrow\infty}g(g(z_{n+1}))=g(z).\tag{3.12} \end{equation} 由$G$与$g$的相容性和(3.7)-(3.9)式及定义3.1可得 \begin{equation} \lim\limits_{n\rightarrow\infty}F_{g(G(x_n,y_n,z_n)), G(g(x_n),g(y_n),g(z_n))}(t)=1,\forall t>0,\tag{3.13} \end{equation} \begin{equation} \lim\limits_{n\rightarrow\infty}F_{g(G(y_n,x_n,y_n)), G(g(y_n),g(x_n),g(y_n))}(t)=1,\forall t>0,\tag{3.14} \end{equation} \begin{equation} \lim\limits_{n\rightarrow\infty}F_{g(G(z_n,y_n,x_n)), G(g(z_n),g(y_n),g(x_n))}(t)=1,\forall t>0.\tag{3.15} \end{equation}

下证$g(x)=G(x,y,z),g(y)=G(y,x,y),g(z)=G(z,y,x)$.

因为$t-\phi(t)>0$,故由(PM-3)可知对任意的$n\geq0,t>0$,有 \begin{equation} F_{g(x),G(x,y,z)}(t)\geq \Delta\{F_{g(x), G(g(x_n),g(y_n),g(z_n))}(t-\phi(t)),F_{G(g(x_n),g(y_n),g(z_n)),G(x,y,z)}(\phi(t))\}, \tag{3.16} \end{equation} 又由(PM-3)可得 \begin{eqnarray} &&F_{g(x),G(g(x_n),g(y_n),g(z_n))}(t-\phi(t)) \\ &\geq& \Delta\Big\{F_{g(x),g(G(x_n,y_n,z_n))}(\frac{t-\phi(t)}{2}), F_{g(G(x_n,y_n,z_n)),G(g(x_n),g(y_n),g(z_n))} (\frac{t-\phi(t)}{2})\Big\}.\tag{3.17}\end{eqnarray} 由(3.10)式和拓扑$\tau$的收敛定义,有 \begin{equation}\lim\limits_{n\rightarrow\infty}F_{g(x),g(G(x_n,y_n,z_n))} (\frac{t-\phi(t)}{2})=1.\tag{3.18} \end{equation} 因为$\frac{t-\phi(t)}{2}>0$,故由(3.13)式可得 \begin{equation}\lim\limits_{n\rightarrow\infty}F_{g(G(x_n,y_n,z_n)), G(g(x_n),g(y_n),g(z_n))}(\frac{t-\phi(t)}{2})=1.\tag{3.19} \end{equation} 由$H$型$t$ -范数的性质可知 $$\lim\limits_{a\rightarrow1,b\rightarrow1}\Delta(a,b)=1.$$ 从而由上式和(3.17)-(3.19)式可得 \begin{equation}\lim\limits_{n\rightarrow\infty}F_{g(x),G(g(x_n),g(y_n), g(z_n))}(t-\phi(t))=1,\forall t>0.\tag{3.20} \end{equation} 又由$G$的连续性和(3.7)-(3.9)式可得 $$ \lim\limits_{n\rightarrow\infty}G(g(x_n),g(y_n),g(z_n))= G(\lim\limits_{n\rightarrow\infty}g(x_n),\lim\limits_{n\rightarrow\infty}g(y_n), \lim\limits_{n\rightarrow\infty}g(z_n))=G(x,y,z).$$ 故由拓扑$\tau$的收敛定义,有 \begin{equation}\lim\limits_{n\rightarrow\infty}F_{G(g(x_n),g(y_n),g(z_n)), G(x,y,z)}(\phi(t))=1.\tag{3.21} \end{equation} 由(3.16)式和(3.20)-(3.21)式及$\lim\limits_{a\rightarrow1,b\rightarrow1}\Delta(a,b)=1$可得 \begin{eqnarray} F_{g(x),G(x,y,z)}(t)&\geq& \lim\limits_{n\rightarrow\infty}\Delta\{F_{g(x), G(g(x_n),g(y_n),g(z_n))}(t-\phi(t)),F_{G(g(x_n),g(y_n),g(z_n)),G(x,y,z)}(\phi(t))\} \\ &=&1.\tag{3.22}\end{eqnarray} 故对任意的$t>0$,有$F_{g(x),G(x,y,z)}(t)=1$,由(PM-1)可得$g(x)=G(x,y,z)$.

同理可证,$F_{g(y),G(y,x,y)}(t)=1,$ $F_{g(z),G(z,y,x)}(t)=1,$ $\forall t>0$. 由(PM-1)可知$g(y)=G(y,x,y),$ $g(z)=G(z,y,x)$.

即$G$与$g$存在三元重合点.

推论 3.1  设$(X,\leq)$是一半序集, $(X,F,\Delta )$是一个完备的Menger PM -空间, $\Delta$是一连续$t$ -范数且$\Delta=\Delta_M$. 设 $G:X\times X\times X\rightarrow X,g:X\rightarrow X$,且$G$具有混合$g$ -单调性质. 设存在$\phi\in\Phi$,使得对任意的$x,y,z,u,v,w\in X,t>0,\beta\in(0,1), \xi\in\{g(x),g(u),G(x,y,z),G(u,v,w)\}$,有 \begin{eqnarray} F_{G(x,y,z),G(u,v,w)}(\phi(t)) &\geq& \min\{F_{g(x),g(u)}(t), F_{g(x),G(x,y,z)}(t),F_{g(u),G(u,v,w)}(t), \\ && [F_{G(x,y,z),\xi}\oplus F_{\xi,G(u,v,w)}((2-\beta)t)]\}, \tag{3.23}\end{eqnarray} 其中$g(x)\geq g(u),g(y)\leq g(v),g(z)\geq g(w)$ (或者$g(x)\leq g(u), g(y)\geq g(v),g(z)\leq g(w)$).

设$G(X\times X\times X)\subseteq g(X)$,$G$和$g$是相容的,$g$连续且单调不减, 并且$X$具有下列性质:

(i)~ 若不减序列$\{x_n\}\rightarrow x$,则对任意的$n\in N,x_n\leq x$;

(ii)~ 若不增序列$\{y_n\}\rightarrow y$,则对任意的$n\in N,y_n\geq y$.

如果存在$x_0,y_0,z_0\in X$使得 $$ g(x_0)\leq G(x_0,y_0,z_0),~~g(y_0)\geq G(y_0,x_0,y_0),~~ g(z_0)\leq G(z_0,y_0,x_0), $$ 则存在$x,y,z\in X$使得 $$ g(x)=G(x,y,z),~~g(y)=G(y,x,y),~~g(z)=G(z,y,x).$$ 即,$G$与$g$存在三元重合点.

在定理3.1中令$g=I$ ($I$为恒等映射),则下面推论成立.

推论 3.2  设$(X,\leq)$是一半序集, $(X,F,\Delta )$是一个完备的Menger PM -空间,$t$ -范数$\triangle$是$H$ -型的. 设 $G:X\times X\times X\rightarrow X$,$G$具有混合单调性质且$G$连续. 设存在$\phi\in\Phi$使得对任意的$x,y,z,u,v,w\in X,t>0,\beta\in(0,1), \xi\in\{G(x,y,z),G(u,v,w)\}$,有 \begin{eqnarray} F_{G(x,y,z),G(u,v,w)}(\phi(t))&\geq& \min\{F_{x,u}(t), F_{x,G(x,y,z)}(t),F_{u,G(u,v,w)}(t), \\ &&[F_{G(x,y,z),\xi}\oplus F_{\xi,G(u,v,w)}((2-\beta)t)]\}, \tag{3.24}\end{eqnarray} 如果存在$x_0,y_0,z_0\in X$使得 $$ x_0\leq G(x_0,y_0,z_0),~~y_0\geq G(y_0,x_0,y_0),~~z_0\leq G(z_0,y_0,x_0), $$ 则存在$x,y,z\in X$使得 $$ x=G(x,y,z),~~y=G(y,x,y),~~z=G(z,y,x). $$ 即,$G$存在三元不动点.

在定理3.1中令$\phi(t)=\kappa t$,则下面推论成立.

推论 3.3  设$(X,\leq)$是一半序集,$(X,F,\Delta )$是一个完备的 Menger PM -空间,$t$ -范数$\triangle$是$H$ -型的. 设 $G:X\times X\times X\rightarrow X,g:X\rightarrow X$,且$G$具有混合$g$ -单调性质, 并且存在$\kappa\in(0,1)$,使得对任意的$x,y,z,u,v,w\in X,t>0,\beta\in(0,1), \xi\in\{G(x,y,z),G(u,v,w)\}$,有 \begin{eqnarray} F_{G(x,y,z),G(u,v,w)}(\kappa t)&\geq& \min\{F_{g(x),g(u)}(t),F_{g(x), G(x,y,z)}(t),F_{g(u),G(u,v,w)}(t), \\ &&[F_{G(x,y,z),\xi}\oplus F_{\xi,G(u,v,w)}((2-\beta)t)]\}, \tag{3.25}\end{eqnarray} 其中$g(x)\geq g(u),g(y)\leq g(v),g(z)\geq g(w)$ (或者$g(x)\leq g(u),g(y)\geq g(v),g(z)\leq g(w)$).

设$G(X\times X\times X)\subseteq g(X)$,$G$和$g$连续且是相容的,并且$g$是单调不减的. 如果存在$x_0,y_0,z_0\in X$使得 $$ g(x_0)\leq G(x_0,y_0,z_0),~~g(y_0)\geq G(y_0,x_0,y_0),~~ g(z_0)\leq G(z_0,y_0,x_0), $$ 则存在$x,y,z\in X$使得 $$ g(x)=G(x,y,z),~~g(y)=G(y,x,y),~~g(z)=G(z,y,x).$$ 即,$G$与$g$存在三元重合点.

下面,通过一个例子来给出定理3.1的应用.

4 例子

例4.1  令$X=[0, 1]$,$F_{x,y}(t)=\frac{t}{t+|x-y|}$,$\Delta=\Delta_M$,则$(X,F,\Delta )$是一个完备的Menger PM -空间.

定义$g:X\rightarrow X,G:X\times X\times X\rightarrow X$如下 $$g(x)=x^3,\forall x\in X,$$ $$G(x,y,z)= \left \{ \begin{array}{ll} \frac{x^3-y^3+z^3}{3},~~ & {x,y,z\in[0, 1],x\geq y\geq z,}\ 0.\end{array} \right.$$ 容易验证,$G(X\times X\times X)\subseteq g(X)$,$g$连续且单调不减, $G$具有混合$g$ -单调性质.

设$\phi(t)=\frac{2}{3}t,t\in[0,\infty).$ 并设$x_0=z_0=0,y_0=c\in[0, 1]$是$X$中三点,则 $$g(x_0)=g(0)=0=G(0,c,0)\leq G(x_0,y_0,z_0),$$ $$g(y_0)=g(c)=c^3\geq \frac{c^3-0^3+c^3}{3}=G(c,0,c)=G(y_0,x_0,y_0),$$ $$g(z_0)=g(0)=0=G(0,c,0)\leq G(z_0,y_0,x_0).$$

下证定理3.1中的(3.1)式成立. 取$x,y,z,u,v,w\in X$, 使$g(x)\leq g(u),$ $g(y)\geq g(v),$ $g(z)\leq g(w)$,也即,$x\leq u,y\geq v,z\leq w$.

下面分四种情况讨论:

情形1 当$G(x,y,z)=\frac{x^3-y^3+z^3}{3},G(u,v,w)=\frac{u^3-v^3+w^3}{3}$时, 也即,$x\geq y\geq z,u\geq v\geq w$时,有 \begin{eqnarray} F_{G(x,y,z),G(u,v,w)}(\phi(t))&=&F_{\frac{x^3-y^3+z^3}{3},\frac{u^3-v^3+w^3}{3}}(\frac{2}{3}t) \\ &=&\frac{\frac{2}{3}t}{\frac{2}{3}t+|\frac{x^3-y^3+z^3}{3}-\frac{u^3-v^3+w^3}{3}|} \\ &=&\frac{2t}{2t+|(u^3-x^3)+(y^3-v^3)+(w^3-z^3)|}.\tag{4.1}\end{eqnarray} 由$x\leq u,y\geq v,z\leq w$,可得 $$|(u^3-x^3)+(y^3-v^3)+(w^3-z^3)|=(u^3-x^3)+(y^3-v^3)+(w^3-z^3)\leq u^3-v^3+w^3,$$ 故由(4.1)式可得 \begin{equation}F_{G(x,y,z),G(u,v,w)}(\phi(t))\geq\frac{2t}{2t+(u^3-v^3+w^3)} \geq\frac{t}{t+|\frac{u^3-v^3+w^3}{3}-u^3|}=F_{g(u),G(u,v,w)}(t),\tag{4.2} \end{equation} 从而由(4.2)式可知,$G$与$g$满足(3.1)式.

情形2 当$G(x,y,z)=\frac{x^3-y^3+z^3}{3},G(u,v,w)=0$时, 即$x\geq y\geq z$时,有 \begin{eqnarray} F_{G(x,y,z),G(u,v,w)}(\phi(t))&=&F_{\frac{x^3-y^3+z^3}{3},0}(\frac{2}{3}t) \\ &=&\frac{\frac{2}{3}t}{\frac{2}{3}t+|\frac{x^3-y^3+z^3}{3}-0|} \\ &=&\frac{2t}{2t+|x^3-y^3+z^3|} \\ &\geq&\frac{t}{t+|\frac{x^3-y^3+z^3}{3}-x^3|} \\ &=&F_{g(x),G(x,y,z)}(t), \end{eqnarray} 从而$G$与$g$满足(3.1)式.

情形3 当$G(x,y,z)=0,G(u,v,w)=\frac{u^3-v^3+w^3}{3}$时, 即 $u\geq v\geq w$时,有 \begin{eqnarray} F_{G(x,y,z),G(u,v,w)}(\phi(t))&=&F_{0,\frac{u^3-v^3+w^3}{3}}(\frac{2}{3}t) \\ &=&\frac{\frac{2}{3}t}{\frac{2}{3}t+|0-\frac{u^3-v^3+w^3}{3}|} \\ &=&\frac{2t}{2t+|u^3-v^3+w^3|} \\ &\geq&\frac{t}{t+|\frac{u^3-v^3+w^3}{3}-u^3|} \\ &=&F_{g(u),G(u,v,w)}(t), \end{eqnarray} 从而$G$与$g$满足(3.1)式.

情形4 当$G(x,y,z)=0,G(u,v,w)=0$时,有 $$ F_{G(x,y,z),G(u,v,w)}(\phi(t))=F_{0,0}(\frac{2}{3}t)= \frac{\frac{2}{3}t}{\frac{2}{3}t+|0-0|}=1\geq F_{g(x),g(u)}(t), $$ 从而$G$与$g$满足(3.1)式.

设$\{x_n\},\{y_n\},\{z_n\}\in X$使得 \begin{equation}\lim\limits_{n\rightarrow\infty}G(x_n,y_n,z_n)=a,~~ \lim\limits_{n\rightarrow\infty}g(x_n)=a,\tag{4.3} \end{equation} \begin{equation} \lim\limits_{n\rightarrow\infty}G(y_n,x_n,y_n)=b,~~ \lim\limits_{n\rightarrow\infty}g(y_n)=b,\tag{4.4} \end{equation} \begin{equation} \lim\limits_{n\rightarrow\infty}G(z_n,y_n,x_n)=c,~~ \lim\limits_{n\rightarrow\infty}g(z_n)=c.\tag{4.5} \end{equation} 因为$G(x,y,z)=0,G(u,v,w)=0,\forall x,y,z,u,v,w\in X$, 故由(4.3)-(4.5)式可知$a=0,b=0,$ $c=0$,从而可得 $$\lim\limits_{n\rightarrow\infty}x_n=\lim\limits_{n\rightarrow\infty}y_n= \lim\limits_{n\rightarrow\infty}z_n= \lim\limits_{n\rightarrow\infty}\sqrt[3]{a}=\lim\limits_{n\rightarrow\infty} \sqrt[3]{b}=\lim\limits_{n\rightarrow\infty}\sqrt[3]{c}=0.$$ 因为$\lim\limits_{n\rightarrow\infty}x_n=\lim\limits_{n\rightarrow\infty}y_n= \lim\limits_{n\rightarrow\infty}z_n=0$及$G$与$g$是连续的,故有 $$\lim\limits_{n\rightarrow\infty}G(x_n,y_n,z_n)= \lim\limits_{n\rightarrow\infty}G(y_n,x_n,y_n)= \lim\limits_{n\rightarrow\infty}G(z_n,y_n,x_n)= G(0,0,0)=0, $$ $$\eqalign{ & \mathop {\lim }\limits_{n \to \infty } G(g({x_n}),g({y_n}),g({z_n})) = \mathop {\lim }\limits_{n \to \infty } G(g({y_n}),g({x_n}),g({y_n})) \cr & = \mathop {\lim }\limits_{n \to \infty } G(g({z_n}),g({y_n}),g({x_n})) = G(0,0,0) = 0, \cr} \tag{4.6}$$ \begin{equation}\lim\limits_{n\rightarrow\infty}g(G(x_n,y_n,z_n))= \lim\limits_{n\rightarrow\infty}[G(x_n,y_n,z_n)]^3=[G(0,0,0)]^3=0.\tag{4.7} \end{equation} 由(4.6)式和(4.7)式可得 \begin{equation} \lim\limits_{n\rightarrow\infty}F_{G(g(x_n),g(y_n),g(z_n)),0}(t)=1, \lim\limits_{n\rightarrow\infty}F_{g(G(x_n,y_n,z_n)),0}(t)=1,\forall t>0.\tag{4.8} \end{equation} 由(PM-3)有 \begin{equation} F_{g(G(x_n,y_n,z_n)),G(g(x_n),g(y_n),g(z_n))}(t)\geq \Delta\Big\{F_{g(G(x_n,y_n,z_n)),0}(\frac{t}{2}), F_{G(g(x_n),g(y_n),g(z_n)),0}(\frac{t}{2})\Big\}.\tag{4.9} \end{equation} 由(4.9)式和(4.8)式及$\lim\limits_{a\rightarrow1,b\rightarrow1}\Delta(a,b)=1$可得 \begin{equation}\lim\limits_{n\rightarrow\infty}F_{g(G(x_n,y_n,z_n)), G(g(x_n),g(y_n),g(z_n))}(t)=1,\forall t>0.\tag{4.10} \end{equation} 同理可证 \begin{equation}\lim\limits_{n\rightarrow\infty}F_{g(G(y_n,x_n,y_n)), G(g(y_n),g(x_n),g(y_n))}(t)=1,\forall t>0; \tag{4.11} \end{equation} \begin{equation}\lim\limits_{n\rightarrow\infty}F_{g(G(z_n,y_n,x_n)), G(g(z_n),g(y_n),g(x_n))}(t)=1,\forall t>0.\tag{4.12} \end{equation} 从而由(4.10)-(4.12)式可知,$G$与$g$是相容的. 综上,$G,g$,$\phi$满足定理3.1中的所有条件. 因为$G(0,0,0)=g(0)=0$,故$(0,0,0)$是$G$与$g$在$X$中的三元重合点.

下证$G$与$g$不是可交换的.$$g(G({x_n},{y_n},{z_n})) = \left\{ {\matrix{ {\matrix{ {{{({{x_n^3 - y_n^3 + z_n^3} \over 3})}^3},} \hfill & {{x_n},{y_n},{z_n} \in [0,1],{x_n} \ge {y_n} \ge {z_n},} \hfill & {} \hfill \cr } } \cr {0.} \cr } } \right.$$

设$x_n eq0,x_n>y_n\geq z_n$,有 \begin{eqnarray} g(G(z_n,y_n,x_n))&=&(\frac{x_n^3-y_n^3+z_n^3}{3})^3 eq \frac{(x_n^3)^3 -(y_n^3)^3+(z_n^3)^3}{3} \\ &=&\frac{(g(x_n))^3-(g(y_n))^3+(g(z_n))^3}{3}=G(g(x_n),g(y_n),g(z_n)). \end{eqnarray}

参考文献
[1] Menger K. Statistical metrics. Proc Natl Acad Sci USA, 1942, 28(12):535-537
[2] Schweizer B, Sklar A. Probabilistic Metric Space. Amsterdam:North-Holland, 1983
[3] Hadzic O, Pap E. Fixed Point Theory in Probabilistic Metric Space. Dordrecht:Kluwer Academic Publishers, 2001
[4] Schweizer B, Sklar A. Statistical metric spaces. Pac J Math, 1960, 10(1):314-334
[5] Sehgal V M, Bharucha-Reid A T. Fixed points of contraction mappings on PM-spaces. Math Syst Theory, 1972, 6(1/2):97-102
[6] Jungck G. Compatible mappings and common fixed points. Int J Math Sci, 1986, 9(4):771-779
[7] Zhu C X, Xu Z B. Inequalities and solution of an operator equation. Appl Math Lett, 2008, 21(6):607-611
[8] Zhu C X. Research on some problems for nonlinear operators. Nonlinear Anal, 2009, 71(10):4568-4571
[9] Fang J X. Common fixed point theorems of compatible and weakly compatible maps in Menger spaces. Nonlinear Anal, 2009, 71(5/6):1833-1843
[10] Karapinar E. Coupled fixed point theorems for nonlinear contractions in cone metric spaces. Comput Math Appl, 2010, 59(12):3656-3668
[11] Sedghi S, Altun I, Shobe N. Coupled fixed point theorems for contractions in fuzzy metric spaces. Nonlinear Anal, 2010, 72(3):1298-1304
[12] Choudhury B S, Kundu A. A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal, 2010, 73(8):2524-2531
[13] Samet B. Coupled fixed point theorems for a generalized Meir-Keeler contractions in partially ordered metric spaces. Nonlinear Anal, 2010, 72(12):4508-4517
[14] Xiao J Z, Zhu X H, Cao Y F. Common coupled fixed point results for probabilistic φ-contractions in Menger spaces. Nonlinear Anal, 2011, 74(13):4589-4600
[15] Hu X Q, Ma X Y. Coupled coincidence point theorems under contractive condtions in partially ordered probabilistic metric spaces. Nonlinear Anal, 2011, 74(17):6451-6458
[16] Berinde V, Borcut M. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal, 2011, 74(15):4889-4897
[17] Borcut M. Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl Math Comp, 2012, 218(14):7339-7346
[18] Doric D. Nonlinear coupled coincidence and coupled fixed point theorems for not necessary commutative contractive mappings in partially ordered probabilistic metric spaces. Appl Math Comp, 2013, 219(11):5926-5935