数学物理学报  2016, Vol. 36 Issue (1): 150-156   PDF (247 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
刘红梅
周文书
李阳
双变量超几何级数的变换与简化公式
刘红梅, 周文书, 李阳    
大连民族大学理学院 辽宁大连 116600
摘要: 该文利用两个二次变换公式建立了两个一般的双重超几何级数变换公式,由此推导出若干新的类型为F1:0;μ1:1;λF2:0;μ2:1;λ的双变量超几何级数的简化公式.
关键词: 双变量超几何级数     简化公式    
Transformation and Reduction Formulae for Bivariate Hypergeometric Series
Liu Hongmei, Zhou Wenshu, Li Yang    
School of Science, Dalian Nationalities University, Liaoning Dalian 116600
Abstract: Two quadratic transformations are applied to establish two general transformation formulae for double hypergeometric series. Further new reduction formulae for the bivariate hypergeometric series of types F1:0;μ1:1;λ and F2:0;μ2:1;λ are given.
Key words: Bivariate Hypergeometric Series     Reduction Formulae    

1 引言

广义的单变量超几何级数定义如下,参见文献[2, 16] \[_{1 + p}{F_q}\left[ {\begin{array}{*{20}{c}} {{a_0},{a_1}, \cdots ,{a_p}} \\ {{b_1}, \cdots ,{b_q}} \end{array}|z} \right] = \sum\limits_{k = 0}^\infty {\frac{{{{({a_0})}_k}{{({a_1})}_k} \cdots {{({a_p})}_k}}}{{k!{{({b_1})}_k} \cdots {{({b_q})}_k}}}} {z^k},\] 其中,当 $n=1,2,\cdots$时,升阶乘$(x)_n=x(x+1)\cdots(x+n-1)$,而当$n=0$时,$(x)_0=1$ .

由Srivastava和Daoust[17]提出的双变量超几何级数定义为 \[\begin{gathered} F_{C:D;D'}^{A:B;B'}\left[ {\begin{array}{*{20}{c}} {[(a):\vartheta ,\varphi ]:[(b):\psi ];[(b'):\psi ']} \\ {[(c):\xi ,\eta ]:[(d):\zeta ];[(d'):\zeta ']} \end{array}|x,y} \right] \hfill \\ : = \sum\limits_{m,n = 0}^\infty {\frac{{\prod\limits_{j = 1}^A {{{({a_j})}_{m{\vartheta _j} + n{\varphi _j}}}} \prod\limits_{j = 1}^B {{{({b_j})}_{m{\psi _j}}}} \prod\limits_{j = 1}^{B'} {{{({b_{j'}})}_{n{\psi _{j'}}}}} }}{{\prod\limits_{j = 1}^C {{{({c_j})}_{m{\xi _j} + n{\eta _j}}}} \prod\limits_{j = 1}^D {{{({d_j})}_{m{\zeta _j}}}} \prod\limits_{j = 1}^{D'} {{{({d_{j'}})}_{n{\zeta _{j'}}}}} }}} \frac{{{x^m}{y^n}}}{{m!n!}}, \hfill \\ \end{gathered} \] 收敛条件为 $$ 1+\sum_{j=1}^C\xi_j+\sum_{j=1}^D\zeta_j-\sum_{j=1}^A\vartheta_j-\sum_{j=1}^B\psi_j\geq0, $$ $$ 1+\sum_{j=1}^C\eta_j+\sum_{j=1}^{D'}\zeta_j'-\sum_{j=1}^A\varphi_j-\sum_{j=1}^{B'}\psi_j'\geq0.$$ 当然,为了保证这个级数的收敛性,也可以适当的选取$|x|$和$|y|$的值,参见文献[10].

当参数$\vartheta,\varphi,\psi,\psi',\xi,\eta,\zeta$和$\zeta'$ 全部取$1$时, 上述双变量超几何级数就是著名的Kampé de Fériet函数,参见文献[1, 14] \[\begin{gathered} F_{C:D;D'}^{A:B;B'}\left[ {\begin{array}{*{20}{c}} {{\alpha _1}, \cdots ,{\alpha _A}:{a_1}, \cdots ,{a_B};{c_1}, \cdots ,{c_{B'}}} \\ {{\beta _1}, \cdots ,{\beta _C}:{b_1}, \cdots ,{b_D};{d_1}, \cdots ,{d_{D'}}} \end{array}|x,y} \right] \hfill \\ = \sum\limits_{m,n = 0}^\infty {\frac{{{{({\alpha _1}, \cdots ,{\alpha _A})}_{m + n}}{{({a_1}, \cdots ,{a_B})}_m}{{({c_1}, \cdots ,{c_{B'}})}_n}}}{{{{({\beta _1}, \cdots ,{\beta _C})}_{m + n}}{{({b_1}, \cdots ,{b_D})}_m}{{({d_1}, \cdots ,{d_{D'}})}_n}}}} \frac{{{x^m}{y^n}}}{{m!n!}}, \hfill \\ \end{gathered} \] 其中,$(a_1,a_2,\cdots,a_r)_n=(a_1)_n(a_2)_n\cdots(a_r)_n$.我们可以在文献中查阅到大量的Kampé de Fériet函数的简化和求和公式, 例如文献[3, 4, 6, 7, 11, 12, 13, 15].

在2005年,应用三个二次变换公式,Chen-Srivastava[5] 推导出一些双变量超几何级数的简化公式. 最近,使用迭代技术, Srivastava等[18]获得一系列Srivastava-Daoust双变量超几何级数的简化公式. 在这些工作的基础上,本文将建立两个一般的双变量超几何级数的变换公式, 以此推导一批类型为$F_{1:0;\mu}^{1:1;\lambda}$和$F_{2:0;\mu}^{2:1;\lambda}$ 的超几何级数的简化公式. 本文中,由于参数 $\psi,\psi',\zeta$和$\zeta'$都为$1$,我们将在$F_{C:D;D'}^{A:B;B'}$的表示式中略去它们.

2 基于高斯$_2F_1$变换的简化公式

定理 2.1  (变换公式) 对任意复数序列$\{{\Omega}(j)\}$,下列变换公式成立 \[\sum\limits_{i,j = 0}^\infty \Omega (j)\frac{{{{(\alpha )}_{i + 2j}}{{(\beta )}_i}{{(\frac{{\alpha + 1}}{2} - \beta )}_j}}}{{{{(1 + \alpha - \beta )}_{i + 2j}}}}\frac{{{x^i}{y^j}}}{{i!j!}}\tag{2.1a}\] \[\begin{array}{*{20}{l}} { = {{(1 - x)}^{ - \alpha }}\sum\limits_{n = 0}^\infty {\frac{{{{(\frac{\alpha }{2})}_n}{{(\frac{{\alpha + 1}}{2} - \beta )}_n}}}{{n!{{(1 + \alpha - \beta )}_n}}}} {{\left( {\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right)}^n}} \\ { \times \sum\limits_{j = 0}^n \Omega (j)\frac{{{{(\frac{{\alpha + 1}}{2})}_j}{{( - n)}_j}}}{{j!{{(1 + \alpha - \beta + n)}_j}}}{{\left( {\frac{y}{x}} \right)}^j},{\text{ }}} \tag{2.1b}\end{array}\] 这里,假设所有的级数都是收敛的.

  将式(2.1a)重新表示为 \[\sum\limits_{j = 0}^\infty \Omega (j){\frac{{{{(\alpha )}_{2j}}{{(\frac{{\alpha + 1}}{2} - \beta )}_j}{y^j}}}{{j!{{(1 + \alpha - \beta )}_{2j}}}}_2}{F_1}\left[ {\begin{array}{*{20}{c}} {\alpha + 2j,\beta } \\ {1 + \alpha - \beta + 2j} \end{array}|x} \right].\tag{2.2}\] 将式(2.2)中的$_2F_1$ -级数应用如下变换公式,参见文献[9]和[2,2.3节 (2)式]) \[_2{F_1}\left[ {\begin{array}{*{20}{c}} {a,b} \\ {1 + a - b} \end{array}|z} \right] = (1 - z)_2^{ - a}{F_1}\left[ {\begin{array}{*{20}{c}} {\frac{a}{2},\frac{1}{2} + \frac{a}{2} - b} \\ {1 + a - b} \end{array}|\frac{{ - 4z}}{{{{(1 - z)}^2}}}} \right],\tag{2.3}\] 我们可以计算式(2.1a)为 \[{(1 - x)^{ - \alpha }}\sum\limits_{i,j = 0}^\infty \Omega (j)\frac{{{{(\frac{\alpha }{2})}_{i + j}}{{(\frac{{\alpha + 1}}{2} - \beta )}_{i + j}}{{(\frac{{\alpha + 1}}{2})}_j}}}{{{{(1 + \alpha - \beta )}_{i + 2j}}}}\frac{{{{\left( {\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right)}^i}{{\left( {\frac{{4y}}{{{{(1 - x)}^2}}}} \right)}^j}}}{{i!j!}}.\] 将上式中的下标$i$置换为$n-j$并做一些简化计算,可得公式(2.1b).

推论 2.1  (简化公式)\[\begin{gathered} F_{1:0;0}^{1:1;1}\left[ {\begin{array}{*{20}{c}} {[\alpha :1,2]:\beta ;\frac{{\alpha + 1}}{2} - \beta } \\ {[1 + \alpha - \beta :1,2]: - ; - } \end{array}|x,x} \right] \hfill \\ = (1 - x)_3^{ - \alpha }{F_2}\left[ {\begin{array}{*{20}{c}} {\frac{\alpha }{2},\frac{{1 + \alpha - 2\beta }}{4},\frac{{3 + \alpha - 2\beta }}{4}} \\ {\frac{{1 + \alpha - \beta }}{2},\frac{{\alpha - \beta }}{2} + 1} \end{array}|\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right]. \hfill \\ \end{gathered} \]

  我们列出Vandermonde-Chu恒等式如下,参见文献[2,2.3节]和[16,(1.7.7)式] \[_2{F_1}\left[ {\begin{array}{*{20}{c}} { - n,a} \\ b \end{array}|1} \right] = \frac{{{{(b - a)}_n}}}{{{{(b)}_n}}}.\tag{2.4}\] 在定理2.1中,令Ω(j)= 1并且y = x,利用Vandermonde-Chu恒等式(2.4)计算公式(2.1b)中的内和为 $${{{{({{\alpha + 1} \over 2} - \beta + n)}_n}} \over {{{(1 + \alpha - \beta + n)}_n}}}.$$ 经过化简,可得结论.

推论 2.2  (简化公式) \[\begin{gathered} F_{1:0;0}^{1:1;1}\left[ {\begin{array}{*{20}{c}} {[\alpha :1,2]:\beta ;\alpha - \beta } \\ {[1 + \alpha - \beta :1,2]: - ; - } \end{array}|x,x} \right] \hfill \\ = (1 - x)_2^{ - \alpha }{F_1}\left[ {\begin{array}{*{20}{c}} {\frac{\alpha }{2},\frac{1}{2} - \frac{\beta }{2}} \\ {1 + \frac{{\alpha - \beta }}{2}} \end{array}|\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right]. \hfill \\ \end{gathered} \]

  在定理2.1中,令$y=x$, \begin{eqnarray*} {\Omega}(j)=\frac{(\alpha-\beta)_j}{(\frac{\alpha+1}{2}-\beta)_j} , \end{eqnarray*} 利用如下Dixon定理,参见文献[16,Ⅲ. 9] \[_3{F_2}\left[ {\begin{array}{*{20}{c}} {a,b, - n} \\ {1 + a - b,1 + a + n} \end{array}|1} \right] = \frac{{{{(1 + a)}_n}{{(1 + \frac{a}{2} - b)}_n}}}{{{{(1 + \frac{a}{2})}_n}{{(1 + a - b)}_n}}},\tag{2.5}\] 计算(2.1b)式的内和,化简后,即得结论.

推论 2.3  (求和公式) \[F_{1:0;1}^{1:1;2}\left[ {\begin{array}{*{20}{c}} {[\alpha :1,2]:{\text{ }}\beta ;{\text{ }}\alpha - \beta ,1 + \frac{{\alpha - \beta }}{2}} \\ {[1 + \alpha - \beta :1,2]:{\text{ }} - ;{\text{ }}\frac{{\alpha - \beta }}{2}} \end{array}|x, - x} \right] = {(1 + x)^{ - \alpha }}.\]

  在定理2.1中,令$y=-x$, \begin{eqnarray*} {\Omega}(j)=\frac{(\alpha-\beta)_j(1+\frac{\alpha-\beta}{2})_j} {(\frac{\alpha-\beta}{2})_j(\frac{\alpha+1}{2}-\beta)_j} , \end{eqnarray*} 公式(2.1b)中的内和可由下列公式计算,参见文献[16,Ⅲ. 11] \[_4{F_3}\left[ {\begin{array}{*{20}{c}} {a,1 + \frac{a}{2},b, - n} \\ {\frac{a}{2},1 + a - b,1 + a + n} \end{array}| - 1} \right] = \frac{{{{(1 + a)}_n}}}{{{{(1 + a - b)}_n}}},\tag{2.6}\] 经过化简,我们能够得到上述求和公式.

值得注意的是,这个求和公式的右端不依赖于参数$\beta$.

推论 2.4  (简化公式) \[\begin{gathered} F_{1:0;2}^{1:1;3}\left[ {\begin{array}{*{20}{c}} {[\alpha :1,2]:\beta ;\alpha - \beta ,1 + \frac{{\alpha - \beta }}{2},\gamma } \\ {[1 + \alpha - \beta :1,2]: - ;\frac{{\alpha - \beta }}{2},1 + \alpha - \beta - \gamma } \end{array}|x,x} \right] \hfill \\ = (1 - x)_2^{ - \alpha }{F_1}\left[ {\begin{array}{*{20}{c}} {\frac{\alpha }{2},\frac{{1 + \alpha }}{2} - \beta - \gamma } \\ {1 + \alpha - \beta - \gamma } \end{array}|\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right]. \hfill \\ \end{gathered} \]

  在定理2.1中,令$y=x$, \begin{eqnarray*} {\Omega}(j)=\frac{(\alpha-\beta)_j(1+\frac{\alpha-\beta}{2})_j(\gamma)_j} {(\frac{\alpha-\beta}{2})_j(\frac{\alpha+1}{2}-\beta)_j(1+\alpha-\beta-\gamma)_j} , \end{eqnarray*} 公式(2.1b)中的内和可由下列公式计算,参见文献[16,Ⅲ. 13] \[_5{F_4}\left[ {\begin{array}{*{20}{c}} {a,1 + \frac{a}{2},b,c, - n} \\ {\frac{a}{2},1 + a - b,1 + a - c,1 + a + n} \end{array}|1} \right] = \frac{{{{(1 + a)}_n}{{(1 + a - b - c)}_n}}}{{{{(1 + a - b)}_n}{{(1 + a - c)}_n}}},\tag{2.7}\] 推论得证.

推论 2.5  (简化公式) \[\begin{gathered} F_{1:0;1}^{1:1;2}\left[ {\begin{array}{*{20}{c}} {[\alpha :1,2]:\beta ;\frac{{1 + \alpha }}{2} - \beta ,1 + \frac{{1 + \alpha }}{4}} \\ {[1 + \alpha - \beta :1,2]: - ;\frac{{1 + \alpha }}{4}} \end{array}|x,x} \right] \hfill \\ = (1 - x)_3^{ - \alpha }{F_2}\left[ {\begin{array}{*{20}{c}} {\frac{\alpha }{2},\frac{{\alpha - 1 - 2\beta }}{4},\frac{{\alpha + 1 - 2\beta }}{4}} \\ {\frac{{1 + \alpha - \beta }}{2},\frac{{\alpha - \beta + 2}}{2}} \end{array}|\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right]. \hfill \\ \end{gathered} \]

  在定理2.1中,令$y=x$,${\Omega}(j)=(1+\frac{1+\alpha}{4})_j/(\frac{1+\alpha}{4})_j$, 利用下列公式,参见文献[16,Ⅲ. 15]和[2,4.5节,(1.1)式] \[_3{F_2}\left[ {\begin{array}{*{20}{c}} {a,1 + \frac{a}{2}, - n} \\ {\frac{a}{2},b} \end{array}|1} \right] = \frac{{(b - a - 1 - n){{(b - a)}_{n - 1}}}}{{{{(b)}_n}}},\tag{2.8} \] 化简式子(2.1b),推论得证.

3 基于Whipple$_3F_2$变换的简化公式

定理 3.1  (变换公式) 对任意复数序列$\{{\Omega}(j)\}$,下列变换公式成立 \[\sum\limits_{i,j = 0}^\infty \Omega (j)\frac{{{{(\alpha )}_{i + 2j}}{{(\beta )}_{i + j}}{{(\gamma )}_i}{{(1 + \alpha - \beta - \gamma )}_j}}}{{{{(1 + \alpha - \gamma )}_{i + 2j}}{{(1 + \alpha - \beta )}_{i + j}}}}\frac{{{x^i}{y^j}}}{{i!j!}}\tag{3.1a}\] \[\begin{array}{*{20}{l}} { = {{(1 - x)}^{ - \alpha }}\sum\limits_{n = 0}^\infty {\frac{{{{(\alpha )}_{2n}}{{(1 + \alpha - \beta - \gamma )}_n}}}{{n!{{(1 + \alpha - \beta )}_n}{{(1 + \alpha - \gamma )}_n}}}} {{\left( {\frac{{ - x}}{{{{(1 - x)}^2}}}} \right)}^n}onumber} \\ {[4mm] \times \sum\limits_{j = 0}^n {\frac{{\Omega (j){{(\beta )}_j}{{( - n)}_j}}}{{j!{{(1 + \alpha - \gamma + n)}_j}}}} {{\left( {\frac{y}{x}} \right)}^j},} \tag{3.1b}\end{array}\] 这里假设所有级数均收敛.

  利用Whipple二次变换公式(参见文献[8,p190,4.5(1)式]) \[_3{F_2}\left[ {\begin{array}{*{20}{c}} {\alpha ,\beta ,\gamma } \\ {1 + \alpha - \beta ,1 + \alpha - \gamma } \end{array}{\text{|}}z} \right] = (1 - z)_3^{ - \alpha }{F_2}\left[ {\begin{array}{*{20}{c}} {\frac{\alpha }{2},\frac{{\alpha + 1}}{2},1 + \alpha - \beta - \gamma } \\ {1 + \alpha - \beta ,1 + \alpha - \gamma } \end{array}{\text{|}}\frac{{ - 4z}}{{{{(1 - z)}^2}}}} \right],\] 计算公式(3.1a)如下 \[\begin{gathered} ({\text{3}}.{\text{1a}}) = \sum\limits_{j = 0}^\infty \Omega (j)\frac{{{{(\alpha )}_{2j}}{{(\beta )}_j}{{(1 + \alpha - \beta - \gamma )}_j}{y^j}}}{{j!{{(1 + \alpha - \beta )}_j}{{(1 + \alpha - \gamma )}_{2j}}}}{ \times _3}{F_2}\left[ {\begin{array}{*{20}{c}} {\alpha + 2j,\beta + j,\gamma } \\ {1 + \alpha - \beta + j,1 + \alpha - \gamma + 2j} \end{array}{\text{|}}x} \right] \hfill \\ = \sum\limits_{j = 0}^\infty \Omega (j)\frac{{{{(\alpha )}_{2j}}{{(\beta )}_j}{{(1 + \alpha - \beta - \gamma )}_j}{y^j}}}{{j!{{(1 + \alpha - \beta )}_j}{{(1 + \alpha - \gamma )}_{2j}}}}{(1 - x)^{ - \alpha - 2j}} \hfill \\ { \times _3}{F_2}\left[ {\begin{array}{*{20}{c}} {\frac{\alpha }{2} + j,\frac{{\alpha + 1}}{2} + j,1 + \alpha - \beta - \gamma + j} \\ {1 + \alpha - \beta + j,1 + \alpha - \gamma + 2j} \end{array}|\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right] \hfill \\ = {(1 - x)^{ - \alpha }}\sum\limits_{i,j = 0}^\infty \Omega (j)\frac{{{{(\alpha )}_{2i + 2j}}{{(1 + \alpha - \beta - \gamma )}_{i + j}}{{(\beta )}_j}}}{{{{(1 + \alpha - \beta )}_{i + j}}{{(1 + \alpha - \gamma )}_{i + 2j}}}}\frac{{{{\left( {\frac{{ - x}}{{{{(1 - x)}^2}}}} \right)}^i}{{\left( {\frac{y}{{{{(1 - x)}^2}}}} \right)}^j}}}{{i!j!}}. \hfill \\ \end{gathered} \] 置换下标$i$为$n-j$,化简后得到公式(3.1b).

推论 3.1  (简化公式) \[F_{2:0;0}^{2:1;1}\left[ {\begin{array}{*{20}{c}} {[\alpha :1,2],[\beta :1,1]:\gamma ;1 + \alpha - \beta - \gamma } \\ {[1 + \alpha - \gamma :1,2],[1 + \alpha - \beta :1,1]: - ; - } \end{array}{\text{|}}x,x} \right]\] \[ = (1 - x)_4^{ - \alpha }{F_3}\left[ {\begin{array}{*{20}{c}} {\frac{\alpha }{2},\frac{{1 + \alpha }}{2},\frac{{1 + \alpha - \beta - \gamma }}{2},\frac{{\alpha - \beta - \gamma }}{2} + 1} \\ {1 + \alpha - \beta ,\frac{{1 + \alpha - \gamma }}{2},\frac{{\alpha - \gamma }}{2} + 1} \end{array}|\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right],\tag{3.2}\] \[F_{2:0;1}^{2:1;2}\left[ {\begin{array}{*{20}{c}} {[\alpha :1,2],[\beta :1,1]:{\text{ }}\gamma ;{\text{ }}1 + \alpha - \beta - \gamma ,\alpha - \gamma } \\ {[1 + \alpha - \gamma :1,2],[1 + \alpha - \beta :1,1]:{\text{ }} - ;{\text{ }}1 + \alpha - \beta - \gamma } \end{array}|x,x} \right]\] \[ = (1 - x)_3^{ - \alpha }{F_2}\left[ {\begin{array}{*{20}{c}} {\frac{\alpha }{2},\frac{{1 + \alpha }}{2},1 + \frac{{\alpha - \gamma }}{2} - \beta } \\ {1 + \alpha - \beta ,1 + \frac{{\alpha - \gamma }}{2}} \end{array}|\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right],\tag{3.3}\] \[F_{2:0;1}^{2:1;2}\left[ {\begin{array}{*{20}{c}} {[\alpha :1,2],[\beta :1,1]:\gamma ;\alpha - \gamma ,1 + \frac{{\alpha - \gamma }}{2}} \\ {[1 + \alpha - \gamma :1,2],[1 + \alpha - \beta :1,1]: - ;\frac{{\alpha - \gamma }}{2}} \end{array}{\text{|}}x, - x} \right]\] \[ = (1 - x)_2^{ - \alpha }{F_1}\left[ {\begin{array}{*{20}{c}} {\frac{\alpha }{2},\frac{{1 + \alpha }}{2}} \\ {1 + \alpha - \beta } \end{array}{\text{|}}\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right],\tag{3.4}\] \[F_{2:0;2}^{2:1;3}\left[ {\begin{array}{*{20}{c}} {[\alpha :1,2],[\beta :1,1]:\gamma ;\alpha - \gamma ,1 + \frac{{\alpha - \gamma }}{2},\delta } \\ {[1 + \alpha - \gamma :1,2],[1 + \alpha - \beta :1,1]: - ;\frac{{\alpha - \gamma }}{2},1 + \alpha - \gamma - \delta } \end{array}|x,x} \right]\] \[ = (1 - x)_3^{ - \alpha }{F_2}\left[ {\begin{array}{*{20}{c}} {\frac{\alpha }{2},\frac{{1 + \alpha }}{2},1 + \alpha - \beta - \gamma - \delta } \\ {1 + \alpha - \beta ,1 + \alpha - \gamma - \delta } \end{array}{\text{|}}\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right],\tag{3.5}\] \[F_{2:0;1}^{2:1;2}\left[ {\begin{array}{*{20}{c}} {[\alpha :1,2],[\beta :1,1]:\gamma ;1 + \alpha - \beta - \gamma ,1 + \frac{\beta }{2}} \\ {[1 + \alpha - \gamma :1,2],[1 + \alpha - \beta :1,1]: - ;\frac{\beta }{2}} \end{array}|x,x} \right]\] \[ = (1 - x)_4^{ - \alpha }{F_3}\left[ {\begin{array}{*{20}{c}} {\frac{\alpha }{2},\frac{{1 + \alpha }}{2},\frac{{\alpha - \beta - \gamma }}{2},\frac{{1 + \alpha - \beta - \gamma }}{2}} \\ {1 + \alpha - \beta ,\frac{{1 + \alpha - \gamma }}{2},\frac{{\alpha - \gamma }}{2} + 1} \end{array}|\frac{{ - 4x}}{{{{(1 - x)}^2}}}} \right].\tag{3.6}\]

  在定理3.1中,令${\Omega}(j)=1$,$y=x$, 利用Vandermonde-Chu恒等式(2.4)计算(3.1b)式的内和,易得简化公式(3.2).

在定理3.1中,令${\Omega}(j)=(\alpha-\gamma)_j/(1+\alpha-\beta-\gamma)_j$,$y=x$, (3.1b)式中的内和由公式(2.5)化简,即得简化公式(3.3).

在定理3.1中,令 \begin{eqnarray*} {\Omega}(j)=\frac{(\alpha-\gamma)_j(1+\frac{\alpha-\gamma}{2})_j} {(\frac{\alpha-\gamma}{2})_j(1+\alpha-\beta-\gamma)_j} \end{eqnarray*} 并且令$y=-x$,将公式(2.6)应用到计算(3.1b)式的内和,可得简化公式(3.4).

在定理3.1中,令 \begin{eqnarray*} {\Omega}(j)=\frac{(\alpha-\gamma)_j(1+\frac{\alpha-\gamma}{2})_j(\delta)_j} {(\frac{\alpha-\gamma}{2})_j(1+\alpha-\beta-\gamma)_j(1+\alpha-\gamma-\delta)_j}, \end{eqnarray*} 并且令$y=x$,利用公式(2.7)计算(3.1b)式的内和,即得简化公式(3.5).

在定理3.1中,令${\Omega}(j)=(1+\frac{\beta}{2})_j/(\frac{\beta}{2})_j$以及$y=x$, 利用公式(2.8)计算(3.1b)式的内和,可得简化公式(3.6).

参考文献
[1] Appell P, Kampé de Fériet J. Fonctions Hypergéométriques et Hypersphériques:Polynômes d'Hermite. Paris:Gauthier Villars, 1926
[2] Bailey W N. Generalized Hypergeometric Series. Cambridge:Cambridge Univ Press, 1935
[3] Buschman R G, Srivastava H M. Series identities and reducibility of Kampé de Fériet functions. Math Proc Cambridge Philos Soc, 1982, 91:435-440
[4] Chan W C C, Chen K Y, Chyan C J, Srivastava H M. Some multiple hypergeometric transformations and associated reduction formulas. J Math Anal Appl, 2004, 294:418-437
[5] Chen K Y, Srivastava H M. Series identities and associated families of generating functions. J Math Anal Appl, 2005, 311:582-599
[6] Chu W C, Srivastava H M. Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions. J Comput Appl Math, 2003, 156:355-370
[7] Cvijović D, Miller A R. A reduction formula for the Kampé de Fériet function. Appl Math Lett, 2010, 23:769-771
[8] Erdélyi A, Magnus W, Oberhettinger F, Tricomi F G. Higher Transcendental Functions:Vol I. New York:McGraw-Hill Book Company, 1953
[9] Gauss C F. Disquisitiones generales circa seriem infinitam. Ges Werke, 1866, 3:123-163
[10] Hái N T, Marichev O I, Srivastava H M. A note on the convergence of certain families of multiple hypergeometric series. J Math Anal Appl, 1992, 164:104-115
[11] Van der Jeugt J, Pitre S N, Srinivasa Rao K. Multiple hypergeometric functions and 9-j coefficients. J Phys A, 1994, 27:5251-5264
[12] Van der Jeugt J, Pitre S N, Srinivasa Rao K. Transformation and summation formulas for double hypergeometric series. J Comput Appl Math, 1997, 83:185-193
[13] Van der Jeugt J. Transformation formula for a double Clausenian hypergeometric series, its q-analogue, and its invariance group. J Comput Appl Math, 2002, 139:65-73
[14] Kampé de Fériet J. Les fonctions hypergéométriques d'ordre supérieur á deux variables. C R Acad Sci Paris, 1921, 173:401-404
[15] Liu H M, Wang W P. Transformation and summation formulae for Kampé de Fériet series. J Math Anal Appl, 2014, 409:100-110
[16] Slater L J. Generalized Hypergeometric Functions. Cambridge:Cambridge Univ Press, 1966
[17] Srivastava H M, Daoust M C. On Eulerian integrals associated with Kampé de Fériet's function. Publ Inst Math (Beograd) (NS), 1969, 9:199-202
[18] Srivastava H M, Qureshi M I, Quraishi K A, Arora A. Applications of hypergeometric summation theorems of Kummer and Dixon involving double series. Acta Math Sci, 2014, 34B(3):619-629