数学物理学报  2016, Vol. 36 Issue (1): 130-143   PDF (320 KB)    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
夏治南
Volterra-Stieltjes型泛函积分方程解的存在性及渐近行为
夏治南     
浙江工业大学理学院 杭州 310023
摘要: 利用非紧性测度理论和Schauder不动点定理,该文研究了无界区间上Volterra-Stieltjes型泛函积分方程解的存在性和渐近行为.作为应用,并给出了一些例子来验证主要结论.
关键词: 泛函积分方程     Volterra-Stieltjes型     非紧性测度     Schauder不动点定理     渐近行为    
On Existence and Asymptotic Behavior of Solutions for Functional Integral Equation of Volterra-Stieltjes Type
Xia Zhinan     
College of Science, Zhejiang University of Technology, Hangzhou 310023
Abstract: The aim of this paper is to present existence and asymptotic behavior of solutions for the quadratic functional integral equation of Volterra-Stieltjes type on unbounded interval. The concept of measure of noncompactness and the Schauder fixed point principle are the main tools in carrying out our proof. Furthermore, some examples are given to show the efficiency and usefulness of the main findings.
Key words: Functional integral equation     Volterra-Stieltjes     Measure of noncompactness     Schauder fixed point principle     Asymptotic behavior    
1 引言

众所周知,积分方程、 泛函积分方程在物理学、工程学、经济学、生物学等学科中有着广泛的应用[1, 2]. 最近,泛函积分方程理论吸引了广大学者浓厚的兴趣,不少学者对其进行了深入地研究[3, 4, 5, 6],并逐渐形成了非线性分析中一个重要的研究方向.

利用Stieltjes积分理论,可将经典的积分方程推广为Stieltjes型积分方程, 关于这种推广的方法及Stieltjes型积分方程,可参看文献[7, 8, 9, 10, 11, 12]. 利用泛函分析中的工具,拓扑度理论和不动点定理,这类方程的研究得到了快速的发展,然而大部分文献都是在有界区间上探讨方程的可解性[5, 13, 14, 15, 16, 17],对于无界区间,这类方程的研究还是比较少见,如Bana\'s[18]在无界区间上研究了一类Volterra-Stieltjes积分方程解的存在性.

本文研究如下非线性Volterra-Stieltjes型泛函积分方程 \begin{equation} x(t)=h(t,x(\gamma (t)))+f(t,x(\sigma (t)))\psi (\int_{0}^{\beta (t)}{u}(t,s,x(\eta (s))){{\text{d}}_{s}}g(t,s)),~~~~t\in {{\mathbb{R}}^{+}}. \tag{1.1} \end{equation} 方程$(1.1)$是一类比较广泛的方程,包含了许多非线性分析中的泛函方程、积分方程、泛函积分方程,如经典的Volterra 型积分方程,著名的Chandrasekhar型积分方程都是方程$(1.1)$的特例. 本文在有界连续函数空间内,选取合适的非紧性测度,利用Schauder不动点定理, 在比较弱的条件下,研究方程$(1.1)$解的存在性及渐近行为, 得到的结论具有一般性,推广了有关文献的结果[4, 19, 20, 21].

2 预备知识

首先,我们回顾一下有关有界变差和Stieltjes积分的内容. 假设$x$是定义在 $[a,b]$上的实函数,符号$\bigvee\limits^{b}_{a}x$表示$x$在$[a,b]$上的变差,如果$\bigvee\limits^{b}_{a}x$有限,则称为有界变差. 令函数$g(t,s):[a,b]\times [c,d]\to \mathbb{R}$,则符号$\bigvee\limits^{q}_{t=p}g(t,s)$表示函数$t\rightarrow g(t,s)$在区间$[p,q]\subset [a,b]$上的变差,其中$s\in [c,d]$. 类似可以定义$\bigvee\limits^{q}_{s=p}g(t,s)$. 有关函数的有界变差,可参看文献[11].

如果$x,\varphi$是定义在$[a,b]$上的实函数,在满足一定的条件下[11], Stieltjes积分$\int^{b}_{a}x(t){\rm d}\varphi(t)$存在, 则称$x(t)$关于$\varphi(t)$在$[a,b]$上Stieltjes可积. 在文献中, 有很多条件保证Stieltjes积分的存在,比较常用的是 $x$为连续函数,$\varphi$在$[a,b]$上是有界变差函数[10, 11].

下面,我们介绍几个关于Stieltjes积分常用的性质[10, 11].

引理2.1 如果函数$x$关于有界变差函数$\varphi$在$[a,b]$是Stieltjes可积,则有 $$\bigg|\int^{b}_{a}x(t){\rm d}\varphi(t)\bigg|\leq \int^{b}_{a}|x(t)| {\rm d}\bigg(\bigvee\limits_{a}^{t}\varphi\bigg).$$

引理2.2 如果函数$x_{1},x_{2}$关于非减函数$\varphi$在$[a,b]$是Stieltjes可积且有$x_{1}(t)\leq x_{2}(t),$ $ t\in[a,b]$,则 $$\int^{b}_{a}x_{1}(t){\rm d}\varphi(t)\leq\int^{b}_{a}x_{2}(t){\rm d}\varphi(t).$$

推论2.1 如果函数$x$关于非减函数$\varphi$在$[a,b]$是Stieltjes可积且有$x(t)\geq 0,t\in[a,b]$,则 $$\int^{b}_{a}x(t){\rm d}\varphi(t)\geq 0.$$

类似,我们可以定义Stieltjes积分$\int^{b}_{a}x(s){\rm d}_{s}g(t,s),$ 其中$g:[a,b]\times [c,d]\to \mathbb{R}$,符号 ${\rm d}_{s}$表示关于变量$s$积分.

假设$x$是定义在$[a,b]$上的实函数,定义$\omega(x,\varepsilon)$如下 $$\omega(x,\varepsilon)=\sup\{ |x(t)-x(s)|:~~ t,s\in[a,b],~~|t-s|\leq \varepsilon \}.$$ 设$p(t,s)=p:[a,b]\times [c,d]\to \mathbb{R}$,则定义 $$\omega(p(t,\cdot),\varepsilon)=\sup\{ |p(t,u)-p(t,v)|:~~ u,v\in[c,d], ~~|u-v|\leq \varepsilon \}, $$ 其中$t\in[a,b].$ 类似可以定义$\omega(p(\cdot,s),\varepsilon)$,$s\in[c,d].$

下面我们介绍有关非紧性测度理论方面的内容. 设$(E,\|\cdot\|)$是实Banach空间且零元$\theta\in E.$$B(x,r)$ 表示球心在$x$,半径为$r$的球,$B_{r}$表示球$B(\theta,r)$. $X$是$E$的非空子集,$\overline{X}$,Conv$X$分别表示$X$的闭包,闭凸子集. $E$的所有非空有界子集记为${\mathfrak{M}}_E$,${\mathfrak{M}}_E$的所有相对紧子集记为${\mathfrak{N}}_E$.

定义2.1[22] 函数 $\mu :{{\mathfrak{M}}_{E}}\to {{\mathbb{R}}^{+}}:=[0,\infty )$称为$E$上的非紧性测度,如果满足下面的条件

(1) $\ker \mu = \{X \in {\mathfrak{M}}_{E}:~~ \mu(X)=0\}$ 非空且 $\ker \mu\subset {\mathfrak{N}}_{E}$;

(2) $X \subset Y \Rightarrow \mu(X) \leq \mu (Y)$;

(3) $\mu ({\overline{X}}) = \mu({\rm Conv} X)=\mu (X)$;

(4) $\mu(\lambda X+(1-\lambda)Y)\leq \lambda \mu(X)+(1-\lambda)\mu(Y)$, $\lambda\in[0,1]$;

(5) 如果${\mathfrak{M}}_{E}$闭子集中的序列$\{X_n\}_n$满足 $X_{n+1}\subset X_n$ ($n=1,2,\cdots$),且$\lim\limits_{n\to \infty}\mu (X_n)=0$,则$X_{\infty}=\bigcap\limits_{n=1}^{\infty}X_n$是非空集.

定义 2.1 中的$\ker \mu$称为非紧性测度$\mu$的核且$X_\infty$属于$\mu$的核. 事实上,根据不等式$\mu(X_\infty)\leq \mu(X_n)$,$n = 1,2,\cdots$,可知$\mu(X_\infty)$ = 0,所以$X_\infty \in$ $\ker \mu$. 有关非紧性测度理论及其性质,可参看文献[22].

记Banach空间$BC({{\mathbb{R}}^{+}})$为${{\mathbb{R}}^{+}}$所有实值有界连续函数,且赋予最大值范数 $$\|x\|=\sup\{|x(t)|: t\geq 0\}.$$ 下面介绍定义在$BC({{\mathbb{R}}^{+}})$上的非紧性测度[22]. $X$为${{\mathbb{R}}^{+}}$上的非空有界闭子集,$T>0$为常数,对于$x \in X$,$\varepsilon > 0$,定义$\omega^T(x,\varepsilon)$如下 $$ \omega^T(x,\varepsilon) = \sup\{|x(t) - x(s)| : t,s \in [0,T], |t - s|\leq \varepsilon\}.$$ 令 $$ \omega^T(X,\varepsilon)= \sup\{\omega^T(x,\varepsilon): x\in X \}, $$ $$ \omega_0^T(X)= \lim_{\varepsilon \to 0} \omega^T(X,\varepsilon), $$ $$ \omega_0(X) = \lim_{T \to \infty} \omega_0^T(X).$$ $$ \beta(X) = \lim_{T \to \infty}\left\{ \sup_{x \in X}\left\{\sup\left[|x(t)| : t \geq T \right]\right\}\right\}.$$ 在${{\mathfrak{M}}_{BC({{\mathbb{R}}^{+}})}}$上定义函数$\mu$ 如下 \begin{equation} \mu (X)={{\omega }_{0}}(X)+\beta (X).\text{ } \tag{2.1} \end{equation}

由文献[22]可知$\mu $ 是$BC({{\mathbb{R}}^{+}})$上的非紧性测度. $\ker \mu $ 为非空有界子集$X$且$X$上的函数是局部等度连续的,一致关于$X$在无穷远处趋向于$0$,即对于任意的$\varepsilon >0$,存在$T>0$,使得对于$t\ge T$,$x\in X$,有 $|x(t)|<\varepsilon$.

3 主要结论

在本节中,我们在空间$BC({{\mathbb{R}}^{+}})$中研究方程$(1.1)$解的存在性及其渐近行为. 首先假设如下条件成立

$(H_{1})$ $\psi :\mathbb{R}\to \mathbb{R}$ 是连续函数,$\psi(0)=0$ 且存在常数 $\lambda >0$ 使得

$$|\psi (x)-\psi (y)|\le \lambda |x-y|,~~~~~~x,~y\in \mathbb{R}.$$

$(H_{2})$ $\gamma ,\sigma ,\eta :{{\mathbb{R}}^{+}}\to {{\mathbb{R}}^{+}}$ 均为连续函数, $\beta :{{\mathbb{R}}^{+}}\to {{\mathbb{R}}^{+}}$ 为连续非减函数.

$(H_{3})$ $g:{{\mathbb{R}}^{+}}\times {{\mathbb{R}}^{+}}\to \mathbb{R}$ 满足如下条件

$(H_{3.a})$ 对于所有 ${{t}_{1}},{{t}_{2}}\in {{\mathbb{R}}^{+}}$,$t_{1}<t_{2}$,函数$s\rightarrow g(t_{2},s)-g(t_{1},s)$ 在${{\mathbb{R}}^{+}}$上是非减函数;

$(H_{3.b})$ $s\rightarrow g(0,s)$在${{\mathbb{R}}^{+}}$上是非减函数;

$(H_{3.c})$ 对固定的$t\in {{\mathbb{R}}^{+}}$ 或$s\in {{\mathbb{R}}^{+}}$, 函数$s\rightarrow g(t,s)$,$t\rightarrow g(t,s)$均为${{\mathbb{R}}^{+}}$上的连续函数.

$(H_{4})$ $h:{{\mathbb{R}}^{+}}\times \mathbb{R}\to \mathbb{R}$ 是连续函数且存在函数$l(t)\in BC({{\mathbb{R}}^{+}})$ 使得 $$|h(t,x)-h(t,y)|\le l(t)|x-y|,~~~~~~x,~y\in \mathbb{R},~~t\in {{\mathbb{R}}^{+}}.$$ 而且$\lim\limits_{t\rightarrow\infty}h(t,0)=0$.

$(H_{5})$ $f:{{\mathbb{R}}^{+}}\times \mathbb{R}\to \mathbb{R}$ 是连续函数且存在连续函数$m:{{\mathbb{R}}^{+}}\to {{\mathbb{R}}^{+}}$ 使得 $$|f(t,x)-f(t,y)|\le m(t)|x-y|,~~~~~~x,~y\in \mathbb{R},~~t\in {{\mathbb{R}}^{+}}.$$ 而且$\lim\limits_{t\rightarrow\infty}f(t,0)=0$.

$(H_{6})$ $u:{{\mathbb{R}}^{+}}\times {{\mathbb{R}}^{+}}\times \mathbb{R}\to \mathbb{R}$是连续函数且存在连续函数$k(t,s):{{\mathbb{R}}^{+}}\times {{\mathbb{R}}^{+}}\to {{\mathbb{R}}^{+}}$和连续非减函数$\varphi :{{\mathbb{R}}^{+}}\to {{\mathbb{R}}^{+}}$使得 $$|u(t,s,x)|\le k(t,s)\varphi (|x|),~~~~~~t,~s\in {{\mathbb{R}}^{+}},~~x\in \mathbb{R}.$$

$(H_{7})$ 函数 $t\rightarrow \int^{\beta(t)}_{0}k(t,s){\rm d}_{s}g(t,s)$ 和 $t\rightarrow m(t)\int^{\beta(t)}_{0}k(t,s){\rm d}_{s}g(t,s)$是${{\mathbb{R}}^{+}}$上的有界函数.

$(H_{8})$ 存在常数 $r_{0}>0$满足如下不等式 \begin{equation} Lr+H +\lambda Mr \varphi(r) +\lambda FK\varphi(r)\leq r % \eqno(3.1)$$ \tag{3.1} \end{equation} 且有 $L+\lambda M\varphi(r_{0})<1$,其中 $$ L=\sup\{l(t): t\geq0\},~~~~ H=\sup\{|h(t,0)|: t\geq0 \},~~~~ F=\sup\{|f(t,0)|: t\geq0 \}, $$ $$ M=\sup\bigg\{m(t)\int^{\beta(t)}_{0}k(t,s){\rm d}_{s} g(t,s): t\geq 0 \bigg\},~~ K=\sup\bigg\{\int^{\beta(t)}_{0}k(t,s){\rm d}_{s} g(t,s): t\geq 0 \bigg\}. $$

注3.1  满足条件$(H_{3})$的函数$g(t,s)$有很多,例如

(1) $g(t,s)=s$.

(2) $g(t,s)=s\ln(t+1)$.

(3) $g(t,s)=\left\{ \begin{array}{*{35}{l}} t\ln \frac{t+s}{t}, & ~~~~t>0,~~s\ge 0; \\ 0,\quad & ~~~~t=0,~~s\ge 0. \\ \end{array} \right.$

(4) $g(t,s)=\int^{t}_{0}(\int^{s}_{0}p(z,y){\rm d}y){\rm d}z$,其中 $p:{{\mathbb{R}}^{+}}\times {{\mathbb{R}}^{+}}\to {{\mathbb{R}}^{+}}$是有界可积函数. 更多的例子可见文献[18].

注3.2  注意到如果$r_{0}>0$满足不等式$(3.1)$,则有 $$L+\lambda M\varphi(r_{0})\leq 1-\frac{H}{r_{0}}-\frac{\lambda FK\varphi(r_{0})}{r_{0}}.$$ 因此,如果$H$,$\lambda FK$有一项不等于$0$,条件$L+\lambda M\varphi(r_{0})<1$即满足.

下面我们给出函数$g(t,s)$的性质,其证明可参看文献[9].

引理3.1 在满足条件$(H_{3.a})$,$(H_{3.b})$下,对于固定的$t\in {{\mathbb{R}}^{+}}$,$s\rightarrow g(t,s)$在 ${{\mathbb{R}}^{+}}$上是非减函数.

引理3.2  函数$g$满足条件$(H_{3.a})$,则对任意固定的${{s}_{1}},{{s}_{2}}\in {{\mathbb{R}}^{+}}$,$s_{1}<s_{2}$,有函数$t\rightarrow g(t,s_{2})-g(t,s_{1})$在${{\mathbb{R}}^{+}}$是非减的.

本节的主要结论是如下的定理.

定理3.1 在满足条件$(H_{1})$--$(H_{8})$下,方程$(1.1)$至少存在一个解$x\in BC({{\mathbb{R}}^{+}})$且有$\lim\limits_{t\rightarrow\infty}x(t)=0$.

  在$BC({{\mathbb{R}}^{+}})$上定义算子$\mathcal{F}$如下 $$(\mathcal{F}x)(t)=h(t,x(\gamma (t)))+f(t,x(\sigma (t)))\psi (\int_{0}^{\beta (t)}{u}(t,s,x(\eta (s))){{\text{d}}_{s}}g(t,s)),~~~~t\in \mathbb{R}.$$ 根据假设$(H_{3})$,$(H_{6})$和引理$3.1$,容易证明$\mathcal{F}$的定义是合理的.

定义 $$(Hx)(t)=h(t,x(\gamma(t))),~~~~(Fx)(t)=f(t,x(\sigma(t))), $$ $$ (Ux)(t)=\psi\bigg( \int^{\beta(t)}_{0}u(t,s,x(\eta(s))){\rm d}_{s}g(t,s)\bigg),$$ 则有 $$({\mathcal{F}}x)(t)=(Hx)(t)+(Fx)(t)\times (Ux)(t).$$

对于任意 $T>0$,$\varepsilon>0$,选取 $t_{1},t_{2}\in [0,T]$ 使得 $t_{1}<t_{2}$,$t_{2}-t_{1}\leq\varepsilon$,则对 $x\in BC({{\mathbb{R}}^{+}})$,由引理 $2.1$ 和引理 $3.1$ \begin{eqnarray*} &&|(Ux)(t_{2})-(Ux)(t_{1})| \\ &=&\left|\psi\bigg(\int^{\beta(t_{2})}_{0}u(t_{2},s,x(\eta(s))){\rm d}_{s}g(t_{2},s)\bigg)-\psi\bigg(\int^{\beta(t_{1})}_{0}u(t_{1},s,x(\eta(s))){\rm d}_{s}g(t_{1},s)\bigg)\right| \\ &\leq &\lambda \left|\int^{\beta(t_{2})}_{0}u(t_{2},s,x(\eta(s))){\rm d}_{s}g(t_{2},s)-\int^{\beta(t_{1})}_{0}u(t_{1},s,x(\eta(s))){\rm d}_{s}g(t_{1},s)\right| \\ &\leq& \lambda \left|\int^{\beta(t_{2})}_{0}u(t_{2},s,x(\eta(s))){\rm d}_{s}g(t_{2},s)-\int^{\beta(t_{1})}_{0}u(t_{2},s,x(\eta(s))){\rm d}_{s}g(t_{2},s)\right| \\ & & + \lambda \left|\int^{\beta(t_{1})}_{0}u(t_{2},s,x(\eta(s))){\rm d}_{s}g(t_{2},s)-\int^{\beta(t_{1})}_{0}u(t_{1},s,x(\eta(s))){\rm d}_{s}g(t_{2},s)\right| \\ & & + \lambda \left|\int^{\beta(t_{1})}_{0}u(t_{1},s,x(\eta(s))){\rm d}_{s}g(t_{2},s)-\int^{\beta(t_{1})}_{0}u(t_{1},s,x(\eta(s))){\rm d}_{s}g(t_{1},s)\right| \\ &\leq &\lambda \int^{\beta(t_{2})}_{\beta(t_{1})}\left|u(t_{2},s,x(\eta(s)))\right|{\rm d}_{s}\bigg(\bigvee\limits^{s}_{p=\beta(t_{1})}g(t_{2},p)\bigg) \\ & & + \lambda \int^{\beta(t_{1})}_{0}\left|u(t_{2},s,x(\eta(s)))-u(t_{1},s,x(\eta(s)))\right|{\rm d}_{s}\bigg(\bigvee\limits^{s}_{p=0}g(t_{2},p)\bigg) \\ & & + \lambda \int^{\beta(t_{1})}_{0}|u(t_{1},s,x(\eta(s)))|{\rm d}_{s}\bigg(\bigvee\limits^{s}_{p=0}[g(t_{2},p)-g(t_{1},p)]\bigg) \\ &\leq & \lambda \int^{\beta(t_{2})}_{\beta(t_{1})}\left|u(t_{2},s,x(\eta(s)))\right|{\rm d}_{s}g(t_{2},s) \\ && + \lambda \int^{\beta(t_{1})}_{0}\left|u(t_{2},s,x(\eta(s)))-u(t_{1},s,x(\eta(s)))\right|{\rm d}_{s}g(t_{2},s) \\ & & + \lambda \int^{\beta(t_{1})}_{0}|u(t_{1},s,x(\eta(s)))|{\rm d}_{s}(g(t_{2},s)-g(t_{1},s)) \\ &\leq & \lambda \int^{\beta(t_{2})}_{\beta(t_{1})}k(t_{2},s)\varphi(|x(\eta(s))|){\rm d}_{s}g(t_{2},s) + \lambda \int^{\beta(t_{1})}_{0}\omega^{T}_{u}(\varepsilon){\rm d}_{s}g(t_{2},s)\\ & & + \lambda \int^{\beta(t_{1})}_{0}k(t_{1},s)\varphi(|x(\eta(s))|){\rm d}_{s}(g(t_{2},s)-g(t_{1},s)) \\ &\leq &\lambda k_{T}\varphi(\|x\|)\int^{\beta(t_{2})}_{\beta(t_{1})}{\rm d}_{s}g(t_{2},s)+ \lambda \omega^{T}_{u}(\varepsilon)\int^{\beta(t_{1})}_{0}{\rm d}_{s}g(t_{2},s)\\ & & + \lambda k_{T}\varphi(\|x\|)\int^{\beta(t_{1})}_{0}{\rm d}_{s}(g(t_{2},s)-g(t_{1},s)) \\ &=& \lambda k_{T}\varphi(\|x\|)[g(t_{2},\beta(t_{2}))-g(t_{2},\beta(t_{1}))] + \lambda \omega^{T}_{u}(\varepsilon)[g(t_{2},\beta(t_{1}))-g(t_{2},0)] \\ & & + \lambda k_{T}\varphi(\|x\|)([g(t_{2},\beta(t_{1}))-g(t_{1},\beta(t_{1}))]-[g(t_{2},0)-g(t_{1},0)]) \\ &\leq &\lambda k_{T}\varphi(\|x\|)[g(T,\beta(t_{2}))-g(T,\beta(t_{1}))] + \lambda \omega^{T}_{u}(\varepsilon)[g(T,\beta(t_{1}))-g(T,0)] \\ & & + \lambda k_{T}\varphi(\|x\|)([g(t_{2},\beta(T))-g(t_{1},\beta(T))]+|g(t_{2},0)-g(t_{1},0)|) \\ &\leq &\lambda k_{T}\varphi(\|x\|)\omega^{T}(g(T,\cdot),\omega^{T}(\beta,\varepsilon))+ \lambda \omega^{T}_{u}(\varepsilon)[g(T,\beta(T))-g(T,0)] \\ && + \lambda k_{T}\varphi(\|x\|)[\omega^{T}(g(\cdot,\beta(T)),\varepsilon) + \omega^{T}(g(\cdot,0),\varepsilon)], \end{eqnarray*} 其中 $$ k_{T}=\sup\big\{k(t,s): t\in[0,T],s\in[0,\beta(T)] \big \}, $$ $$ \omega^{T}(g(T,\cdot),\omega^{T}(\beta,\varepsilon))=\sup \big\{ |g(T,\theta_{2})-g(T,\theta_{1})|: \theta_{1},\theta_{2}\in [0,\beta(T)],|\theta_{2}-\theta_{1}|< \omega^{T}(\beta,\varepsilon) \big\}, $$ \begin{eqnarray*} \omega^{T}_{u}(\varepsilon)&=&\sup\big\{|u(t_{2},s,x)-u(t_{1},s,x)|: t_{1},t_{2},\in[0,T],s\in[0,\beta(T)], \\ && |t_{2}-t_{1}|\leq\varepsilon,x\in[-\|x\|,\|x\|] \big \}.\end{eqnarray*} 因为$u$在$[0,T]\times[0,\beta(T)]\times[-\|x\|,\|x\|]$是一致连续的及$\beta$在$[0,T]$的一致连续性,所以在$\varepsilon\rightarrow 0$时,有$\omega^{T}_{u}(\varepsilon)\rightarrow 0$,$\omega^{T}(\beta,\varepsilon)\rightarrow 0$. 从条件$(H_{3.c})$可推得$Ux$在$[0,T]$是连续函数,根据$T$的任意性可知,$Ux$在${{\mathbb{R}}^{+}}$上是连续的. 从条件$(H_{4})$,$(H_{5})$,可知$Fx$,$Hx$均为${{\mathbb{R}}^{+}}$上的连续函数.所以${\mathcal{F}}x$是${{\mathbb{R}}^{+}}$上的连续函数.

下面证明${\mathcal{F}}x$是${{\mathbb{R}}^{+}}$上的有界函数. 对于$x\in BC({{\mathbb{R}}^{+}})$,$t\in {{\mathbb{R}}^{+}}$, \begin{eqnarray} & |(\mathcal{F}x)(t)|\le |h(t,x(\gamma (t)))|+|f(t,x(\sigma (t)))|\cdot \left| \varphi (\int_{0}^{\beta (t)}{u}(t,s,x(\eta (s))){{\text{d}}_{s}}g(t,s)) \right| \\ & \le (|h(t,x(\gamma (t)))-h(t,0)|+|h(t,0)|)+\lambda (|f(t,x(\sigma (t)))-f(t,0)|+|f(t,0)|) \\ & \times \int_{0}^{\beta (t)}{\left| u(t,s,x(\eta (s))) \right|}{{\text{d}}_{s}}(\underset{p=0}{\overset{s}{\mathop{V}}}\,g(t,p)) \\ & \le (l(t)|x(\gamma (t))|+|h(t,0)|)+\lambda (m(t)|x(\sigma (t))|+|f(t,0)|) \\ \tag{3.2}\end{eqnarray} 因此 $$|({\mathcal{F}}x)(t)|\leq L\|x\|+H + \lambda M\varphi(\|x\|)\|x\| + \lambda FK\varphi(\|x\|).$$ 从而 ${\mathcal{F}}x$是${{\mathbb{R}}^{+}}$上的有界函数,即$\mathcal{F}$ 将 $BC({{\mathbb{R}}^{+}})$映射到自身.

根据$(3.2)$式,可知 $$\|{\mathcal{F}}x\|\leq L\|x\|+H + \lambda M\|x\| \varphi(\|x\|) +\lambda FK\varphi(\|x\|).$$ 利用$(H_{8})$,可推得存在常数$r_{0}>0$使得$L+ \lambda M\varphi(r_{0})<1$, 因此 $\mathcal{F}$将球$B_{r_{0}}$映射到自身.

对任意$T>0$,定义 $$m_{T}=\sup\{m(t): t\in[0,T]\},~~\sigma_{T}=\sup\{\sigma(t): t\in[0,T]\}, ~~\gamma_{T}=\sup\{\gamma(t): t\in[0,T]\}.$$ 选取非空子集$X\subseteq B_{r_{0}}$,$x\in X$,对任意$T>0$,$\varepsilon>0$,令$t_{1},t_{2}\in [0,T]$使得$t_{1}<t_{2}$,$t_{2}-t_{1}\leq \varepsilon$,则有 \begin{eqnarray*} &&|(Fx)(t_{2})(Ux)(t_{2})-(Fx)(t_{1})(Ux)(t_{1})|\\ & \leq& |f(t_{2},x(\sigma(t_{2})))-f(t_{2},x(\sigma(t_{1})))| \cdot \left|\psi\bigg(\int^{\beta(t_{2})}_{0}u(t_{2},s,x(\eta(s))){\rm d}_{s}g(t_{2},s)\bigg)\right| \\ &&+ \left|f(t_{2},x(\sigma(t_{1})))- f(t_{1},x(\sigma(t_{1})))\right| \cdot \left|\psi\bigg(\int^{\beta(t_{2})}_{0}u(t_{2},s,x(\eta(s))){\rm d}_{s}g(t_{2},s)\bigg)\right| \\ &&+ |f(t_{1},x(\sigma(t_{1})))| \\ &&\cdot \left|\psi\bigg(\int^{\beta(t_{2})}_{0}u(t_{2},s,x(\eta(s))){\rm d}_{s}g(t_{2},s)\bigg) - \psi\bigg(\int^{\beta(t_{2})}_{0}u(t_{2},s,x(\eta(s))){\rm d}_{s}g(t_{1},s)\bigg)\right| \\ &&+ |f(t_{1},x(\sigma(t_{1})))|\\ && \cdot \left|\psi\bigg(\int^{\beta(t_{2})}_{0}u(t_{2},s,x(\eta(s))){\rm d}_{s}g(t_{1},s)\bigg) -\psi\bigg(\int^{\beta(t_{2})}_{0}u(t_{1},s,x(\eta(s))){\rm d}_{s}g(t_{1},s)\bigg)\right| \\ &&+ |f(t_{1},x(\sigma(t_{1})))| \\ &&\cdot \left|\psi\bigg(\int^{\beta(t_{2})}_{0}u(t_{1},s,x(\eta(s))){\rm d}_{s}g(t_{1},s)\bigg) -\psi\bigg(\int^{\beta(t_{1})}_{0}u(t_{1},s,x(\eta(s))){\rm d}_{s}g(t_{1},s)\bigg)\right| \\ & \leq & \lambda m(t_{2})|x(\sigma(t_{2}))-x(\sigma(t_{1}))|\int^{\beta(t_{2})}_{0}|u(t_{2},s,x(\eta(s)))|{\rm d}_{s}\bigg(\bigvee\limits_{p=0}^{s}g(t_{2},p)\bigg) \\ &&+ \lambda \left|f(t_{2},x(\sigma(t_{1})))-f(t_{1},x(\sigma(t_{1})))\right|\int^{\beta(t_{2})}_{0}|u(t_{2},s,x(\eta(s)))| {\rm d}_{s}\bigg(\bigvee\limits_{p=0}^{s}g(t_{2},p)\bigg) \\ & &+ \lambda \left|f(t_{1},x(\sigma(t_{1})))\right|\int^{\beta(t_{2})}_{0}|u(t_{2},s,x(\eta(s)))|{\rm d}_{s}\bigg(\bigvee\limits_{p=0}^{s}[g(t_{2},p)-g(t_{1},p)]\bigg) \\ & &+ \lambda \left|f(t_{1},x(\sigma(t_{1})))\right|\int^{\beta(t_{2})}_{0}|u(t_{2},s,x(\eta(s)))-u(t_{1},s,x(\eta(s)))| {\rm d}_{s}\bigg(\bigvee\limits_{p=0}^{s}g(t_{1},p)\bigg) \\ & &+ \lambda \left|f(t_{1},x(\sigma(t_{1})))\right|\int^{\beta(t_{2})}_{\beta(t_{1})}|u(t_{1},s,x(\eta(s)))| {\rm d}_{s}\bigg(\bigvee\limits_{p=\beta(t_{1})}^{s}g(t_{1},p)\bigg) \\ & \leq & \lambda m(t_{2})\omega^{T}(x,\omega^{T}(\sigma,\varepsilon))\int^{\beta(t_{2})}_{0}k(t_{2},s)\varphi(|x(\eta(s))|){\rm d}_{s}g(t_{2},s) \\ & &+ \lambda \omega^{T}_{r_{0}}(f,\varepsilon)\int^{\beta(t_{2})}_{0}k(t_{2},s)\varphi(|x(\eta(s))|){\rm d}_{s}g(t_{2},s)\\ & &+ \lambda [m(t_{1})|x(\sigma(t_{1}))|+|f(t_{1},0)|]\int^{\beta(t_{2})}_{0}k(t_{2},s)\varphi(|x(\eta(s))|){\rm d}_{s}[g(t_{2},s)-g(t_{1},s)] \\ & &+ \lambda [m(t_{1})|x(\sigma(t_{1}))|+|f(t_{1},0)|]\int^{\beta(t_{2})}_{0}\omega^{T}_{r_{0}}(u,\varepsilon){\rm d}_{s}g(t_{1},s) \\ & &+ \lambda [m(t_{1})|x(\sigma(t_{1}))|+|f(t_{1},0)|]\int^{\beta(t_{2})}_{\beta(t_{1})}k(t_{1},s)\varphi(|x(\eta(s))|){\rm d}_{s}g(t_{1},s)\\ & \leq& \lambda M\varphi(\|x\|)\omega^{T}(x, \omega^{T}(\sigma,\varepsilon)) + \lambda K\varphi(\|x\|)\omega^{T}_{r_{0}}(f,\varepsilon)+ \lambda (m_{T}\|x\|+F) \\ && \times \bigg\{k_{T}\varphi(\|x\|) \int^{\beta(t_{2})}_{0}{\rm d}_{s}[g(t_{2},s)-g(t_{1},s)] + \omega^{T}_{r_{0}}(u,\varepsilon)\int^{\beta(t_{2})}_{0}{\rm d}_{s}g(t_{1},s)\\ && + k_{T}\varphi(\|x\|)\int^{\beta(t_{2})}_{\beta(t_{1})}{\rm d}_{s}g(t_{1},s) \bigg\}\\ & \leq &\lambda M\varphi(r_{0})\omega^{T}(x,\omega^{T}(\sigma,\varepsilon))+\lambda K\varphi(r_{0})\omega^{T}_{r_{0}}(f,\varepsilon) \\ &&+ \lambda (m_{T}r_{0}+F)\times \left\{k_{T}\varphi(r_{0}) ([g(t_{2},\beta(t_{2}))-g(t_{1},\beta(t_{2}))]-[g(t_{2},0)-g(t_{1},0)] )\right. \\ &&+ \omega^{T}_{r_{0}}(u,\varepsilon)[g(t_{1},\beta(t_{2}))-g(t_{1},0)]+k_{T}\varphi(r_{0})[g(t_{1},\beta(t_{2}))-g(t_{1},\beta(t_{1}))] \}\\ & \leq & \lambda M\varphi(r_{0})\omega^{T}(x,\omega^{T}(\sigma,\varepsilon))+ \lambda K\varphi(r_{0})\omega^{T}_{r_{0}}(f,\varepsilon) \\ && + \lambda (m_{T}r_{0}+F)\times \left\{k_{T}\varphi(r_{0}) ([g(t_{2},\beta(T))-g(t_{1},\beta(T))]+|g(t_{2},0)-g(t_{1},0)| )\right. \\ && +\omega^{T}_{r_{0}}(u,\varepsilon)[g(T,\beta(t_{2}))-g(T,0)]+k_{T}\varphi(r_{0})[g(T,\beta(t_{2}))-g(T,\beta(t_{1}))] \}\\ & \leq& \lambda M\varphi(r_{0})\omega^{T}(x,\omega^{T}(\sigma,\varepsilon))+ \lambda K\varphi(r_{0})\omega^{T}_{r_{0}}(f,\varepsilon) \\ && + \lambda (m_{T}r_{0}+F)\times \left\{k_{T}\varphi(r_{0}) [\omega^{T}(g(\cdot,\beta(T)),\varepsilon)+\omega^{T}(g(\cdot,0),\varepsilon)]\right. \\ && +\omega^{T}_{r_{0}}(u,\varepsilon)[g(T,\beta(T))-g(T,0)]+k_{T}\varphi(r_{0})\omega^{T}(g(T,\cdot),\omega^{T}(\beta,\varepsilon)) \}, \end{eqnarray*} 其中 $$ \omega^{T}(x,\omega^{T}(\sigma,\varepsilon))=\sup\big\{ |x(\theta_{2})-x(\theta_{1})|: \theta_{1},\theta_{2}\in [0,\sigma_{T}],|\theta_{2}-\theta_{1}|< \omega^{T}(\sigma,\varepsilon) \big \}, $$ $$ \omega^{T}_{r_{0}}(f,\varepsilon)=\sup\big\{|f(t_{2},x)-f(t_{1},x)|: t_{1},t_{2}\in[0,T], |t_{2}-t_{1}|\leq\varepsilon,x\in[-r_{0},r_{0}] \big \}, $$ \begin{eqnarray*} \omega^{T}_{r_{0}}(u,\varepsilon)&=&\sup\big\{|u(t_{2},s,x)-u(t_{1},s,x)|: t_{1},t_{2},\in[0,T],s\in[0,\beta(T)], \\ && |t_{2}-t_{1}|\leq\varepsilon,x\in[-r_{0},r_{0}]\big\}, \end{eqnarray*} 且有 \begin{eqnarray*} &&|(Hx)(t_{2})-(Hx)(t_{1})|\\ &=&|h(t_{2},x(\gamma(t_{2})))-h(t_{1},x(\gamma(t_{1})))| \\ &\leq &|h(t_{2},x(\gamma(t_{2})))-h(t_{2},x(\gamma(t_{1})))|+|h(t_{2},x(\gamma(t_{1})))-h(t_{1},x(\gamma(t_{1})))| \\ &\leq &L|x(\gamma(t_{2}))-x(\gamma(t_{1}))|+|h(t_{2},x(\gamma(t_{1})))-h(t_{1},x(\gamma(t_{1})))| \\ &\leq &L\omega^{T}(x,\omega^{T}(\gamma,\varepsilon)) +\omega^{T}_{r_{0}}(h,\varepsilon), \end{eqnarray*} 其中 $$ \omega^{T}(x,\omega^{T}(\gamma,\varepsilon))=\sup\{ |x(\theta_{2})-x(\theta_{1})|: \theta_{1},\theta_{2}\in [0,\gamma_{T}],|\theta_{2}-\theta_{1}|< \omega^{T}(\gamma,\varepsilon) \}, $$ $$ \omega^{T}_{r_{0}}(h,\varepsilon)=\sup\{|h(t_{2},x)-h(t_{1},x)|: t_{1},t_{2}\in[0,T], |t_{2}-t_{1}|\leq\varepsilon,x\in[-r_{0},r_{0}] \}.$$ 从而 \begin{eqnarray*} &&|({\mathcal{F}}x)(t_{2})-({\mathcal{F}}x)(t_{1})| \\ &\leq& |(Hx)(t_{2})-(Hx)(t_{1})| +|(Fx)(t_{2})(Ux)(t_{2})-(Fx)(t_{1})(Ux)(t_{1})| \\ &\leq &L\omega^{T}(x,\omega^{T}(\gamma,\varepsilon)) +\omega^{T}_{r_{0}}(h,\varepsilon) + \lambda M\varphi(r_{0})\omega^{T}(x,\omega^{T}(\sigma,\varepsilon)) +\lambda K\varphi(r_{0})\omega^{T}_{r_{0}}(f,\varepsilon) \\ &&+\lambda (m_{T}r_{0}+F) \times \left\{k_{T}\varphi(r_{0}) [\omega^{T}(g(\cdot,\beta(T)),\varepsilon)+\omega^{T}(g(\cdot,0),\varepsilon)]\right. \\ &&+\omega^{T}_{r_{0}}(u,\varepsilon)[g(T,\beta(T))-g(T,0)]+k_{T}\varphi(r_{0})\omega^{T}(g(T,\cdot), \omega^{T}(\beta,\varepsilon)) \}.\end{eqnarray*} 因此 \begin{eqnarray*} \omega^{T}({\mathcal{F}}x,\varepsilon)&\leq& L\omega^{T}(x,\omega^{T}(\gamma,\varepsilon)) +\omega^{T}_{r_{0}}(h,\varepsilon) +\lambda M\varphi(r_{0})\omega^{T}(x,\omega^{T}(\sigma,\varepsilon)) +\lambda K\varphi(r_{0})\omega^{T}_{r_{0}}(f,\varepsilon) \\ && +\lambda (m_{T}r_{0}+F) \times \{k_{T}\varphi(r_{0}) [\omega^{T}(g(\cdot,\beta(T)),\varepsilon)+\omega^{T}(g(\cdot,0),\varepsilon)] \\ &&+\omega^{T}_{r_{0}}(u,\varepsilon)[g(T,\beta(T))-g(T,0)]+k_{T}\varphi(r_{0})\omega^{T}(g(T,\cdot), \omega^{T}(\beta,\varepsilon)) \}.\end{eqnarray*} 从而 \begin{eqnarray*} \omega^{T}({\mathcal{F}}X,\varepsilon)&\leq &L\omega^{T}(X,\omega^{T}(\gamma,\varepsilon)) +\omega^{T}_{r_{0}}(h,\varepsilon) +\lambda M\varphi(r_{0})\omega^{T}(X,\omega^{T}(\sigma,\varepsilon)) +\lambda K\varphi(r_{0})\omega^{T}_{r_{0}}(f,\varepsilon) \\ && +\lambda (m_{T}r_{0}+F) \times \{k_{T}\varphi(r_{0}) [\omega^{T}(g(\cdot,\beta(T)),\varepsilon)+\omega^{T}(g(\cdot,0),\varepsilon)] \\ &&+\omega^{T}_{r_{0}}(u,\varepsilon)[g(T,\beta(T))-g(T,0)] +k_{T}\varphi(r_{0})\omega^{T}(g(T,\cdot), \omega^{T}(\beta,\varepsilon)) \}.\end{eqnarray*} 所以 $$\omega^{T}_{0}({\mathcal{F}}X)\leq (L+\lambda M\varphi(r_{0}))\omega^{T}_{0}(X). $$ 从而可得到 \begin{equation} \omega_{0}({\mathcal{F}}X)\leq (L+\lambda M\varphi(r_{0}))\omega_{0}(X).%\eqno(3.3)$$ \tag{3.3} \end{equation}

另一方面,对$T>0$和任意$x\in X$,由$(3.2)$式 $$|({\mathcal{F}}x)(t)|\leq L|x(\gamma(t))|+|h(t,0)|+\lambda M\varphi(r_{0})|x(\sigma(t))|+\lambda K\varphi(r_{0})|f(t,0)|,~~~~t\geq T.$$ 根据$(H_{4})$,$(H_{5})$,有 \begin{equation} \beta({\mathcal{F}}X)\leq(L+ \lambda M\varphi(r_{0}))\beta(X). % \eqno(3.4)$$ \tag{3.4} \end{equation} 从而由$(3.3)$,$(3.4)$式可推得 \begin{equation} \mu({\mathcal{F}}X)\leq (L+ \lambda M\varphi(r_{0}))\mu(X),%\eqno(3.5)$$ \tag{3.5} \end{equation} 其中$\mu$ 是 $(2.1)$式中定义的非紧性测度.

考虑序列集$(B^{n}_{r_{0}})$,其中$B^{1}_{r_{0}}={\rm Conv} {\mathcal{F}}(B_{r_{0}})$, $B^{2}_{r_{0}}={\rm Conv}{\mathcal{F}}(B^{1}_{r_{0}}),\cdots$. 易知这些集合均为闭凸集,且$(B^{n}_{r_{0}})$是递减的,即$B^{n+1}_{r_{0}}\subset B^{n}_{r_{0}}$,$n=1,2,\cdots .$ 根据$(3.5)$式可得 $$\mu(B^{n}_{r_{0}})\leq q^{n}\mu(B_{r_{0}}),$$ 其中 $q=L+ \lambda M\varphi(r_{0})$,而且容易证明$\mu(B_{r_{0}})=3r_{0}$.由 $q<1$,可知 $$\lim\limits_{n\rightarrow\infty}\mu(B^{n}_{r_{0}})=0.$$ 因此,根据非紧性测度的定义,可推得$Y=\bigcap\limits^{\infty}_{n=1}B^{n}_{r_{0}}$ 是非空有界闭凸集. 不难证明,$Y\in \ker \mu$且 $\mathcal{F}$将$Y$映入$Y$.

下面我们将证明$\mathcal{F}$是$Y$上的连续函数. 对任意$\varepsilon>0$,选取$x,y\in Y$使得 $\|x-y\|\leq\varepsilon$. 因为 $y\in Y$,$Y\in \ker \mu$且 $\lim\limits_{t\rightarrow\infty}f(t,0)=0$,所以存在$T>0$,使得对于$t>T$,有 $|y(\sigma(t))|<\varepsilon$,$|f(t,0)|<\varepsilon$. 利用引理$2.1$,引理$2.2$,对$t>T$,有 \begin{eqnarray} & |(\mathcal{F}x)(t)-(\mathcal{F}y)(t)| \\ & \le |(Hx)(t)-(Hy)(t)|+|(Fx)(t)\cdot (Ux)(t)-(Fy)(t)\cdot (Uy)(t)| \\ & \le l(t)\|x-y\|+|f(t,x(\sigma (t)))-f(t,y(\sigma (t)))|\cdot \left| \psi (\int_{0}^{\beta (t)}{u}(t,s,x(\eta (s))){{\text{d}}_{s}}g(t,s)) \right| \\ & +|f(t,y(\sigma (t)))|\cdot \left| \psi (\int_{0}^{\beta (t)}{u}(t,s,x(\eta (s))){{\text{d}}_{s}}g(t,s))-\psi (\int_{0}^{\beta (t)}{u}(t,s,y(\eta (s))){{\text{d}}_{s}}g(t,s)) \right| \\ & \le L\varepsilon +\lambda m(t)\|x-y\|\int_{0}^{\beta (t)}{|}u(t,s,x(\eta (s)))|{{\text{d}}_{s}}(\underset{p=0}{\overset{s}{\mathop{V}}}\,g(t,p)) \\ & +\lambda (m(t)|y(\sigma (t))|+|f(t,0)|)\int_{0}^{\beta (t)}{|}u(t,s,x(\eta (s)))-u(t,s,y(\eta (s)))|{{\text{d}}_{s}}(\underset{p=0}{\overset{s}{\mathop{V}}}\,g(t,p)) \\ & \le L\varepsilon +\lambda \varepsilon m(t)\int_{0}^{\beta (t)}{k}(t,s)\varphi (|x(\eta (s))|){{\text{d}}_{s}}g(t,s)+\lambda (m(t)|y(\sigma (t))|+|f(t,0)|) \\ & \times \int_{0}^{\beta (t)}{(|u(}t,s,x(\eta (s)))|+|u(t,s,y(\eta (s)))|){{\text{d}}_{s}}g(t,s) \\ & \le L\varepsilon +\lambda \varepsilon \varphi ({{r}_{0}})m(t)\int_{0}^{\beta (t)}{k}(t,s){{\text{d}}_{s}}g(t,s)+\lambda (m(t)|y(\sigma (t))|+|f(t,0)|) \\ & \times 2\varphi ({{r}_{0}})\int_{0}^{\beta (t)}{k}(t,s){{\text{d}}_{s}}g(t,s) \\ & \le L\varepsilon +\lambda M\varphi ({{r}_{0}})\varepsilon +2\lambda \varphi ({{r}_{0}})(m(t)|y(\sigma (t))|+|f(t,0)|)\int_{0}^{\beta (t)}{k}(t,s){{\text{d}}_{s}}g(t,s) \\ & \le (L+3\lambda M\varphi ({{r}_{0}})+2\lambda K\varphi ({{r}_{0}}))\varepsilon , \\ \tag{3.6}\end{eqnarray} 另一方面,$t\in[0,T]$, \begin{eqnarray} & |(\mathcal{F}x)(t)-(\mathcal{F}y)(t)| \\ & \le l(t)\|x-y\|+|f(t,x(\sigma (t)))-f(t,y(\sigma (t)))|\cdot \left| \psi (\int_{0}^{\beta (t)}{u}(t,s,x(\eta (s))){{\text{d}}_{s}}g(t,s)) \right| \\ & +|f(t,y(\sigma (t)))|\cdot \left| \psi (\int_{0}^{\beta (t)}{u}(t,s,x(\eta (s))){{\text{d}}_{s}}g(t,s))-\psi (\int_{0}^{\beta (t)}{u}(t,s,y(\eta (s))){{\text{d}}_{s}}g(t,s)) \right| \\ & \le L\varepsilon +\lambda m(t)\|x-y\|\int_{0}^{\beta (t)}{k}(t,s)\varphi (|x(\eta (s))|){{\text{d}}_{s}}g(t,s) \\ & +\lambda (m(t)|y(\sigma (t))|+|f(t,0)|)\int_{0}^{\beta (t)}{|}u(t,s,x(\eta (s)))-u(t,s,y(\eta (s)))|{{\text{d}}_{s}}g(t,s) \\ & \le L\varepsilon +\lambda M\varphi ({{r}_{0}})\varepsilon +\lambda ({{m}_{T}}{{r}_{0}}+F){{{\bar{\omega }}}_{{{r}_{0}}}}(u,\varepsilon )[g(t,\beta (t))-g(t,0)] \\ & \le L\varepsilon +\lambda M\varphi ({{r}_{0}})\varepsilon +\lambda ({{m}_{T}}{{r}_{0}}+F){{{\bar{\omega }}}_{{{r}_{0}}}}(u,\varepsilon )[g(T,\beta (T))-g(T,0)], \\ \tag{3.7}\end{eqnarray} 其中 $$\overline{\omega}_{r_{0}}(u,\varepsilon)=\sup\{|u(t,s,x)-u(t,s,y)|: t\in[0,T], s\in[0,\beta(T)],x,y\in[-r_{0},r_{0}],|x-y|\leq\varepsilon\}.$$ 由$u$在$[0,T]\times[0,\beta(T)]\times[-r_{0},r_{0}]$的一致连续性,可推得$\overline{\omega}_{r_{0}}(u,\varepsilon)\rightarrow 0$,$\varepsilon\rightarrow 0$. 利用$(3.6)$,$(3.7)$式可知$\mathcal{F}$是$Y$上的连续函数. 根据Schauder不动点定理,$\mathcal{F}$在$Y$上至少存在一解$x$. 不难证明$x=x(t)$是方程$(1.1)$的解. 因为 $Y\in \ker \mu$,从而 $\lim\limits_{t\rightarrow\infty}x(t)=0$. 定理 $3.1$ 证毕.

如果 $\psi(x)=x$,此时$(H_{1})$ 成立,方程$(1.1)$即为 \begin{equation} x(t)=h(t,x(\gamma (t)))+f(t,x(\sigma (t)))\int_{0}^{\beta (t)}{u}(t,s,x(\eta (s))){{\text{d}}_{s}}g(t,s),~~t\in {{\mathbb{R}}^{+}}. \tag{3.8} \end{equation} 根据定理3.1,如下结论成立.

推论3.1 如果$(H_{2})$--$(H_{8})$成立,则方程$(3.8)$至少存在一解$x\in BC({{\mathbb{R}}^{+}})$且$\lim\limits_{t\rightarrow\infty}x(t)=0$.

注3.3 当$f(t,x)=1$ 或者$f(t,x)=a(t)$,$a(t)$在无穷远处不趋于零,此时条件$(H_{5})$不满足,这时候就不能应用定理3.1,推论3.1. 针对这种情况,我们下面给出如下的结论.

假设如下条件成立

$(H'_{5})$ $f:{{\mathbb{R}}^{+}}\times \mathbb{R}\to \mathbb{R}$ 是连续函数且存在连续函数 $m:{{\mathbb{R}}^{+}}\to {{\mathbb{R}}^{+}}$ 使得 $$|f(t,x)-f(t,y)|\le m(t)|x-y|,~~~~x,y\in \mathbb{R},~~t\in {{\mathbb{R}}^{+}}.$$ 且有$f(t,0)\in BC({{\mathbb{R}}^{+}})$.

$(H_{9})$ $\lim\limits_{t\rightarrow\infty}\int^{\beta(t)}_{0}k(t,s){\rm d}_{s}g(t,s)=0.$

类似于定理3.1,推论3.1的证明,有

定理3.2 假设$(H_{1})$--$(H_{4})$,$(H'_{5})$,$(H_{6})$--$(H_{9})$成立,则方程$(1.1)$至少存在一解$x\in BC({{\mathbb{R}}^{+}})$且有$\lim\limits_{t\rightarrow\infty}x(t)=0$.

推论3.2 假设$(H_{2})$--$(H_{4})$,$(H'_{5})$,$(H_{6})$--$(H_{9})$成立, 则方程$(3.8)$至少存在一解$x\in BC({{\mathbb{R}}^{+}})$ 且有$\lim\limits_{t\rightarrow\infty}x(t)=0$.

4 例子

在本节中,我们举一些例子来验证本文的主要结论.

例4.1 如果$g(t,s)=s$,容易证明 $(H_{3})$成立,此时方程$(1.1)$即为 \begin{equation} x(t)=h(t,x(\gamma (t)))+f(t,x(\sigma (t)))\psi (\int_{0}^{\beta (t)}{u}(t,s,x(\eta (s)))\text{d}s),~~~~t\in {{\mathbb{R}}^{+}}. \tag{4.1}\end{equation} 由定理$3.1$,定理$3.2$,可知

定理4.1 假设$(H_{1})$,$(H_{2})$,$(H_{4})$--$(H_{8})$成立, 则方程$(4.1)$至少存在一解$x\in BC({{\mathbb{R}}^{+}})$且有$\lim\limits_{t\rightarrow\infty}x(t)=0$.

定理4.2 假设$(H_{1})$,$(H_{2})$,$(H_{4})$,$(H'_{5})$,$(H_{6})$--$(H_{9})$ 成立, 则方程$(4.1)$至少存在一解$x\in BC({{\mathbb{R}}^{+}})$且有$\lim\limits_{t\rightarrow\infty}x(t)=0$.

注意到参考文献中广泛研究的积分方程、泛函积分方程,很多都是方程$(4.1)$的特殊情况, 定理4.1,定理4.2也推广了相关的结论,例如

$\bullet$  如果 $\psi(x)=x$,$f(t,x)=1$,方程 $(4.1)$即为如下形式[4] \begin{equation} x(t)=h(t,x(\gamma (t)))+\int_{0}^{\beta (t)}{u}(t,s,x(\eta (s)))\text{d}s,~~~~t\in {{\mathbb{R}}^{+}}. \tag{4.2}\end{equation} 在方程$(4.2)$中,如果$\gamma(t)=\beta(t)=\eta(t)=t$,即为文献[19] 研究的方程. 如果$h(t,x)=q(t)$,$\beta(t)=\eta(t)=t$, 方程$(4.2)$变成经典的非线性Volterra积分方程[1, 2].

$\bullet$  如果$\psi(x)=x$,$\gamma(t)=\sigma(t)=\beta(t)=\eta(t)=t$,方程$(4.1)$变为如下的非线性二次Volterra型积分方程[21] \begin{equation} x(t)=h(t,x(t))+f(t,x(t))\int_{0}^{t}{u}(t,s,x(s))\text{d}s,~~~~t\in {{\mathbb{R}}^{+}}. \tag{4.3}\end{equation} 在方程$(4.3)$中,如果$h(t,x)=0$,文献[23]研究了此类方程; 如果$f(t,x)=x$, 文献[24]对这类方程进行了探讨.

$\bullet$  如果$h(t,x)=q(t)$,则方程为如下形式[25] \begin{equation} x(t)=q(t)+f(t,x(\sigma (t)))\psi (\int_{0}^{\beta (t)}{u}(t,s,x(\eta (s)))\text{d}s),~~~~t\in {{\mathbb{R}}^{+}}. \tag{4.4}\end{equation} 在方程$(4.4)$中,如果$\psi(x)=x$,文献[20]对这类方程进行了研究.

例4.2 考虑如下二次Volterra型积分方程 \begin{equation} x(t)=h(t,x(t))+x(t)\int_{0}^{t}{\frac{t}{t+s}}u(t,s,x(s))\text{d}s,~~~~~t\in {{\mathbb{R}}^{+}}. \tag{4.5}\end{equation} 这类方程包含了经典的二次Chandrasekhar型积分方程[14, 18, 26, 27].

如果 $$g(t,s)=\left\{ \begin{array}{*{35}{l}} t\ln \frac{t+s}{t}, & ~~~~t>0,~~s\ge 0; \\ 0,\quad & ~~~~t=0,~~s\ge 0. \\ \end{array} \right.$$ 则此时方程$(4.5)$为方程$(1.1)$的特殊情况,其中$\psi(x)=x$,$\gamma(t)=\sigma(t)=\eta(t)=\beta(t)=t$,且 $f(t,x)=x$,从而条件$(H_{1})$--$(H_{3})$成立 $(\lambda=1)$. 另外一方面,不难验证$(H_{5})$也满足,此时$m(t)=1,$ $f(t,0)=0,F=0$. 根据定理$3.1$,有

定理4.3 假设$(H_{4})$,$(H_{6})$满足且如下条件成立:

$(H'_{7})$ 函数$t\rightarrow \int^{t}_{0}\frac{t}{t+s}k(t,s){\rm d}s$在${{\mathbb{R}}^{+}}$上有界;

$(H'_{8})$ 存在常数$r_{0}>0$满足不等式 $Lr+H + \widetilde{K}r \varphi(r) \leq r$,且有$L+\widetilde{K}\varphi(r_{0})<1$,其中 $$\widetilde{K}= \sup\left\{\int^{t}_{0}\frac{t}{t+s} k(t,s){\rm d}s: t\geq 0 \right\}. $$ 则方程$(4.5)$至少存在一解$x\in BC({{\mathbb{R}}^{+}})$且有$\lim\limits_{t\rightarrow\infty}x(t)=0.$

最后,我们给出满足定理3.1所有条件的一个具体例子.

例4.3 考虑如下二次Volterra型泛函积分方程 \begin{equation} x(t)=\frac{1}{32}{{\text{e}}^{-{{t}^{2}}}}+\frac{{{t}^{2}}+2}{32({{t}^{2}}+1)}x(2t)+({{\text{e}}^{-2t}}+{{t}^{2}}x(\sqrt{t}))\int_{0}^{{{t}^{2}}}{\frac{{{x}^{2}}(s)}{1+{{t}^{4}}+{{s}^{2}}}}\text{d}s,~~~~t\in {{\mathbb{R}}^{+}}. \tag{4.6}\end{equation} 易知方程$(4.6)$是方程$(1.1)$的特殊情形,其中$\psi(x)=x,g(t,s)=s,\gamma(t)=2t, \sigma(t)=\sqrt{t},\beta(t)=t^{2},$ $ \eta(t)=t$,且 $$h(t,x(\gamma(t)))=\frac{1}{32}{\rm e}^{-t^{2}}+\frac{t^{2}+2}{32(t^{2}+1)}x(2t), $$ $$ f(t,x(\sigma(t)))={\rm e}^{-2t}+t^{2}x(\sqrt{t}),~~u(t,s,x(\eta(s)))=\frac{x^{2}(s)}{1+t^{4}+s^{2}}.$$ 从而$\lambda=1,l(t)=\frac{t^{2}+2}{32(t^{2}+1)},h(t,0)=\frac{1}{32}{\rm e}^{-t^{2}}$, 即有 $L=\frac{1}{16},H=\frac{1}{32}$,所以$(H_{1})$--$(H_{4})$成立.另一方面,我们有 $m(t)=t^{2}$,$k(t,s)=\frac{1}{1+t^{4}+s^{2}}$,$f(t,0)={\rm e}^{-2t}$, $\varphi(x)=x^{2}$,因此$F=1$,$M=K=\frac{\pi}{4}$.最后,注意到$(H_{8})$的不等式有如下形式 $$\frac{1}{16}r+\frac{1}{32}+\frac{\pi}{4}r^{3}+\frac{\pi}{4}r^{2}\leq r.$$ 不难证明,存在正常数$r_{0}$满足此不等式且有$L+\lambda M\varphi(r_{0})<1$ (如$r_{0}=\frac{2}{3}$). 从而$(H_{5})$--$(H_{8})$成立. 根据定理3.1,方程 $(4.6)$至少存在一解$x\in BC({{\mathbb{R}}^{+}})$且有$\lim\limits_{t\rightarrow\infty}x(t)=0.$

参考文献
[1] Burton T A. Volterra Integral and Differential Equations. New York:Academic Press, 1983
[2] Corduneanu C. Integral Equations and Applications. Cambridge:Cambridge University Press, 1991
[3] Banaś J, Caballero Mena J. Some properties of nonlinear Volterra-Stieltjes integral operator. Comput Math Appl, 2005, 49:1565-1573
[4] Banaś J, Dhage B C. Global asymptotic stability of solutions of a functional integral equation. Nonlinear Anal, 2008, 69:1945-1952
[5] Banaś J, Zajac T. A new approach to the theory of functional integral equations of fractional order. J Math Anal Appl, 2011, 375:375-387
[6] Liang J, Yan S, Agarwal R P, Huang T. Integral solution of a class of nonlinear integral equations. Appl Math Comput, 2013, 219:4950-4957
[7] Abbas S, Benchohra M, Nieto J J. Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations. Electron J Qual Theory Differ Equ, 2012, 81:1-15
[8] Banaś J. Some properties of Urysohn-Stieltjes integral operators. Inter J Math Math Sci, 1998, 21:79-88
[9] Banaś J, O'Regan D. Volterra-Stieltjes integral operators. Math Comput Modelling, 2005, 41:335-344
[10] Dunford N, Schwartz J. Linear Operator I. Leyden:Int Publ, 1963
[11] Natanson I P. Theory of Functions of a Real Variable. New York:Ungar, 1960
[12] Banaś J, Rodriguez J R, Sadarangani K. On a class of Urysohn-Stieltjes quadratic integral equations and their applications. J Comput Appl Math, 2000, 113:35-50
[13] Banaś J, Dronka J. Integral operators of Volterra-Stieltjes type, their properties, and applications. Math Comput Modelling, 2000, 32:1321-1331
[14] Banaś J, Sadarangani K. Solvability of Volterra-Stieltjes operator-integral equations and their applications. Comput Math Appl, 2001, 41:1535-1544
[15] Caballero J, O'Regan D, Sadarangani K. On monotonic solutions of some integral equations. Arch Math (Brno), 2005, 41:325-338
[16] Caballero J, Rocha J, Sadarangani K. On monotonic solutions of an integral equation of Volterra-Stieltjes type. Math Nachr, 2008, 279:130-141
[17] Darwish M A, Henderson J. Nondecreasing solutions of a quadratic integral equation of Urysohn-Stieltjes type. Rocky Mountain J Math, 2012, 42:545-566
[18] Banaś J. Existence results for Volterra-Stieltjes quadratic integral equations on an unbounded interval. Math Scand, 2006, 98:143-160
[19] Banaś J, Rzepka B. An application of a measure of noncompactness in the study of asymptotic stability. Appl Math Lett, 2003, 16:1-6
[20] Dhage B C, Bellale S S. Local asymototic stability for nonlinear quadratic functional integral equations. Electron J Qual Theory Differ Equ, 2008, 10:1-13
[21] Liu Z, Kang S M. Existence and asymptotic stability of solutions to a functional-integral equation. Taiwanese J Math, 2007, 11:187-196
[22] Banaś J, Goebel K. Measures of Noncompactness in Banach Spaces. New York and Basel:Marcel Dekker, 1980
[23] Banaś J, Rzepka B. On existence and asymptotic stability of solutions of a nonlinear integral equation. J Math Anal Appl, 2003, 284:165-173
[24] Hu X, Yan J. The global attractivity and asymptotic stability of solution of a nonlinear integral equation. J Math Anal Appl, 2006, 321:147-156
[25] Aghajani A, Sabzali N. Existence and local attractivity of solutions of a nonlinear quadratic functional integral equation. Iran J Sci Technol Trans A Sci, 2012, 36:453-460
[26] Argyros I K. Quadratic equations and applications to Chandrasekhar's and related equations. Bull Austral Math Soc, 1985, 32:275-283
[27] Chandrasekhar S. Radiative Transfer. New York:Dover, 1960