波谱学杂志, 2025, 42(1): 13-21 doi: 10.11938/cjmr20243118

研究论文

原位固体核磁共振转子插件的设计及其在催化反应中的应用研究

沈雪媛1,2, 王瑞琛1,2, 齐国栋,1,2,*, 徐君,1,2,#, 邓风1,2

1.中国科学院精密测量科学与技术创新研究院,波谱与原子分子物理国家重点实验室,武汉磁共振中心,湖北 武汉 430071

2.中国科学院大学,北京 100049

Design of in situ Solid-State NMR Rotor Inserts and Their Application to Catalytic Reactions

SHEN Xueyuan1,2, WANG Ruichen1,2, QI Guodong,1,2,*, XU Jun,1,2,#, DENG Feng1,2

1. National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

通讯作者: *Tel: 027-87197359, E-mail:qgdong@wipm.ac.cn;# Tel: 027-87197359, E-mail:xujun@wipm.ac.cn.

收稿日期: 2024-05-20   网络出版日期: 2024-06-20

基金资助: 国家重点基础研究发展计划资助项目(2022YFB3504000); 中国科学院磁共振技术联盟科研仪器设备研制/功能开发项目(2021gzl004); 中国科学院前瞻战略科技先导专项(XDB0540000); 国家自然科学基金(22272185); 国家自然科学基金(22225205); 国家自然科学基金(22320102002); 国家自然科学基金(22127801)

Corresponding authors: *Tel: 027-87197359, E-mail:qgdong@wipm.ac.cn;# Tel: 027-87197359, E-mail:xujun@wipm.ac.cn.

Received: 2024-05-20   Online: 2024-06-20

摘要

原位固体核磁共振技术(NMR)是研究真实反应条件下催化反应过程的有力工具之一,但传统商用固体NMR转子难以在魔角旋转(MAS)条件下满足反应所需的温度和压力等条件.本文设计并加工了适用于商用固体NMR转子的插件,在转子中能够耐受室温至433 K温度范围以及常压至618.3 kPa密闭压力范围的反应条件,为在NMR磁体内原位研究化学反应提供了一种新的手段.利用该设计,我们通过固体1H MAS NMR实验原位研究了Sn-MFI分子筛上二羟基丙酮的异构化反应,发现二羟基丙酮可经过偕二醇类中间体异构化生成甘油醛的反应途径.

关键词: 固体核磁共振; 原位; NMR转子; 催化反应; 谱学表征

Abstract

In situ solid-state nuclear magnetic resonance (NMR) serves as a powerful means to study catalytic reactions under operating conditions. Standard solid-state NMR rotors typically struggle to match the pressure and temperature of active reactions during sampling. Here, we introduce specialized inserts for commercial solid-state NMR rotors capable of withstanding pressures from atmospheric to 618.3 kPa and temperatures ranging from room temperature up to 433 K. With this innovative design, we examine the isomerization of dihydroxyacetone (DHA) on Sn-MFI zeolite catalyst using in situ 1H MAS NMR, revealing the presence of a gem-diols-type intermediate during the transformation of DHA into glyceraldehyde.

Keywords: solid-state NMR; in situ; NMR rotors; catalytic reactions; spectroscopic characterization

PDF (749KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

沈雪媛, 王瑞琛, 齐国栋, 徐君, 邓风. 原位固体核磁共振转子插件的设计及其在催化反应中的应用研究[J]. 波谱学杂志, 2025, 42(1): 13-21 doi:10.11938/cjmr20243118

SHEN Xueyuan, WANG Ruichen, QI Guodong, XU Jun, DENG Feng. Design of in situ Solid-State NMR Rotor Inserts and Their Application to Catalytic Reactions[J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 13-21 doi:10.11938/cjmr20243118

引言

固体核磁共振(Nuclear Magnetic Resonance,NMR)具有对近程结构变化敏感,针对特定原子核无损检测的特点,已经发展成为多相催化体系中一种不可或缺的研究工具[1-4].固体NMR可以从原子-分子水平上获得催化剂活性位组成、结构以及性质等信息,进而揭示催化剂结构与反应性能的内在联系.然而,催化剂一般在特定温度与反应压力下才表现出催化活性[5].比如,煤转化工业中常见的费托合成反应需要20标准大气压和473 K~573 K条件下才能高效进行[6].为了能阐明催化剂在“工作条件下”的结构和性质,需要对催化剂以及反应过程进行原位固体NMR表征[7-9].

实验室里使用的商业固体NMR转子主要由氧化锆陶瓷外壁、聚合物驱动轮和密封帽等组成,无法满足针对催化反应原位实验研究所需要的温度和压力等条件[10].为此,研究人员做了许多相关工作,发展出了一系列原位固体NMR装置与技术.具有代表性的有原位CAVERN(Cryogenic Adsorption Vessel Enabling Rotor Nestling)装置[11]、Hunger等人[12]设计的原位-流动-魔角旋转(MAS)固体NMR探头、熔封小玻璃安瓶法[13]和Haw等人[14]设计的脉冲-终止(Pulse-Quench)装置.上述设计可以分别实现变温或者高压条件下的固体NMR研究.其中原位CAVERN装置和原位-流动-魔角旋转固体NMR探头能实现常压条件下的高温(673 K)NMR实验,但无法用于高压条件,且需要利用大尺寸的NMR转子,其中CAVERN装置一般使用Pencil型7.5 mm转子,原位-流动-魔角旋转固体NMR探头使用布鲁克商用7 mm转子,这会导致MAS的转速受限,无法获得高分辨的谱图.小玻璃安瓶虽能承受一定的压力,但涉及高压气体样品时熔封难度大且高温易破裂;脉冲-终止装置需要配合液氮冷却系统,可在反应进行的任何时间段冷却终止反应,然后将催化剂转移到NMR转子中密封后再进行固体NMR分析,该方法虽然可用于高压反应终止后的产物或中间体分析,但属于间歇式的原位反应,只能在非反应环境下进行NMR检测.除了固体NMR转子本身的设计结构外,无磁耐温、耐压材料的选用及其精密加工和密封等技术也是限制原位NMR技术发展的主要因素.近年来,材料科学的发展与加工技术的进步,促进了原位NMR技术快速的发展.例如,Hu等人[15] 利用精密陶瓷加工工艺针,针对安捷伦NMR谱仪加工了具有螺纹和O型圈密封结构的高温、高压固体NMR转子.该转子可以在523 K的条件下承受10 MPa以上的压力,转速与传统外径为7.5 mm转子无差别,可达到6 kHz.但这种转子加工制造工艺复杂,尤其是当需要使用高转速小转子的时候,其加工难度倍增.类似地,针对布鲁克NMR谱仪,研究人员还设计了具有螺纹密封结构,外径为4 mm的高温、高压固体NMR转子,可以实现常压至6 MPa压力范围和室温至513 K温度范围条件下,固、液、气等多相体系的原位固体NMR研究[16].然而,这些设计需要对高硬度氧化锆陶瓷材料进行精密加工,不仅加工难度大,转子成品率低,导致其造价昂贵,难以在实验室间推广.

研发适用于商业化固体NMR转子的插件可避免对高硬度氧化锆材料加工的问题.Ivanova等人为布鲁克 NMR谱仪的7 mm固体NMR转子开发了反应釜式插件,用于408~423 K碱性条件下分子筛晶化过程的原位NMR研究[17,18].其结构由两部分组成,类似于两个内嵌的水热合成反应釜,外部反应釜选用具有较高强度的聚酰胺酰亚胺(PAI)材料,用于承受压力,内部反应釜选用聚三氟氯乙烯橡胶(Kel-F)材料,可耐受碱性和酸性介质.然而,这种内嵌双釜式插件不仅结构复杂,而且使用PAI材质会在1H或13C的固体NMR谱图中产生复杂的背景信号.

为了摆脱原位NMR实验对特制转子的依赖,本文设计并加工了一种适用于布鲁克NMR谱仪的固体NMR转子插件,选用更容易加工成型的聚醚醚酮(Poly(ether-ether-ketone),PEEK)和聚四氟乙烯(Polytetrafluoroethylene,PTFE)材料,无需对商用转子额外改造即可实现宽温度范围(室温至433 K)以及密闭压力(常压至618.3 kPa)条件下多相催化反应的原位固体NMR研究.此外,所使用的聚合物材料的NMR背景信号单一,极大减少了对观测信号干扰.利用该插件并配合商用NMR转子,我们通过原位固体1H MAS NMR谱动态跟踪了Sn-MFI分子筛催化剂上生物质平台化合物二羟基丙酮(Dihydroxyacetone,DHA)的异构化过程.

1 原位固体NMR转子插件的设计

固体NMR转子插件主要由具有外螺纹的密封盖、具有内螺纹的样品仓和O型密封圈组成(图1).密封盖通过螺纹旋入样品仓中,压紧O型密封圈来实现体系的密封.密封盖的内十字(或外六角)的设计主要是为了通过螺丝刀旋紧或开启密封盖,还可通过旋转插件来调整其在NMR转子中的朝向、保证旋转稳定性、方便插件从转子中取出.由于需要在强磁体中实现高速MAS,因此材料选择存在一些限制:不宜选用磁性材料或具有磁屏蔽效应的金属或导电材料,也不宜选用质量重、密度较大,且加工难度大的玻璃或陶瓷材料.为此,我们选用具有一定机械强度和低热膨胀系数的耐热高分子材料来加工插件的各个部件.插件密封盖和样品仓选用PEEK或PTFE材料,O型密封圈选用耐高温的氟橡胶材料.为控制插件的质量、强度及其与转子的匹配度,并保证在高速MAS条件下插件内部样品的装样量,我们按图1(c)所示的尺寸,加工了两种可分别嵌入到布鲁克4 mm、7 mm NMR转子中的插件.

图1

图1   原位固体NMR转子插件:(a)设计示意图、(b)实物图(从左到右依次为:4 mm PTFE插件、4 mm PEEK插件、7 mm PTFE插件、7 mm PEEK插件)、(c) 4 mm和(d) 7 mm插件加工详细尺寸参数

Fig. 1   In situ solid NMR rotor insert: (a) design schematic diagram, (b) product picture, the parameters of (c) 4 mm and (d) 7 mm insert.


2 原位固体NMR转子插件的性能测试

2.1 插件的密闭性能

为验证密闭插件的耐热稳定性,分别向PEEK、PTFE材质的4 mm和7 mm插件中装入一定量水并密封,然后在303、313、333、353、373、393、413、433、453 K共9个温度点对其进行20 min加热后,再次称重插件,与加热前的质量进行对比.如图2(a)所示,当PTFE材质的4 mm插件加热温度为303~393 K时,加热导致体系重量变化不足1%,说明在这个温度范围内插件密封性良好,根据水的饱和蒸汽压与温度的关系可知此时插件承受的压强为198.6 kPa;然而,当温度大于393 K时发生明显失重量,说明高温导致插件失去密闭性.PEEK材质4 mm插件出现明显失重的临界温度为433 K,对应压强为618.3 kPa,明显高于PTFE材质插件的失重温度,这可能和PEEK材料的热固性能优于PTFE有关.通过图1可知,7 mm插件的壁厚(0.65 mm)明显要大于4 mm插件(0.50 mm),说明7 mm插件应该具有更高的机械强度.如图2(b)所示,PTFE材质的7 mm插件出现明显失重的临界温度为433 K,对应压强为618.3 kPa,明显高于同材质的4 mm插件的失重温度.然而当PEEK材质插件的壁厚增加到7 mm时,其出现明显失重的临界温度仍然为433 K,对应压强为618.3 kPa.为了分析导致插件失去密闭性的原因,我们将加热后的插件拆解,然后检测各个部件的变形情况.我们发现4 mm PTFE插件本身的强度不足导致高温形变是其失重的原因;7 mm PTFE材质插件和两个尺寸的PEEK材质插件本身都没有发生形变,其失重的原因是高压导致O型密封圈断裂,因此更换更高强度的石墨材质O型密封圈有望进一步提高其耐温耐压能力.为了验证上述插件的密闭性,在接近极限操作温度和压强条件下,进行了3次重复性实验(测试结果见表1),可见封入一定量水的插件加热后最大失重不超过2%,说明多次使用后插件仍然保持良好的密闭性.

图2

图2   不同材质的(a) 4 mm和(b) 7 mm插件封入一定量水后在不同温度加热导致重量变化图

Fig. 2   Comparison of weight changes of (a) 4 mm and (b) 7 mm inserts made of different materials, followed by heating at elevating temperatures with a fixed amount of water encapsulated inside.


表1   接近极限操作温度和压力下的插件密闭性测试

Table 1  Sealability test of the inserts under the boundary temperature and pressure condition

插件温度/K压强/kPa重量变化/%
第1次测试第2次测试第3次测试
4 mm PTFE393198.600-0.5
4 mm PEEK433618.30-2.0-0.5
7 mm PTFE433618.3-0.3-0.1-0.5
7 mm PEEK433618.3-0.5-0.3-0.3

新窗口打开| 下载CSV


2.2 插件的旋转稳定性

转子能否稳定、高速旋转是其用于固体NMR实验的关键评价指标.我们利用布鲁克500 MHz固体NMR谱仪的MAS控制单元、探头和转子进行了插件旋转稳定性测试.以干燥的空气作为轴承和驱动气体,调控不同转速并记录对应转速下轴承和驱动气流压强,通过和空转子在相同转速下的轴承和驱动气流压强进行对比,反映转速稳定性和插件对转子驱动效率的影响.如图3所示,在4 mm或7 mm布鲁克转子中装入插件后,MAS转速分别可达到0~10 kHz或0~4 kHz.同空转子相比,在相同转速下所受轴承气流、驱动气流压强没有明显差别,表明我们所加工的NMR插件可用于固体MAS NMR实验.

图3

图3   不同材质的(a) 4 mm和(b) 7 mm插件装入相应固体NMR转子的转速-气流压强数据曲线

Fig. 3   Speed-pressure curves of (a) 4 mm and (b) 7 mm inserts made of different materials within corresponding solid-state NMR rotors


2.3 插件内部的温度均匀性

插件内部的温度均匀性是原位变温固体NMR实验中的一项重要参数,它可影响材料的相变和化学反应的一致性.在进行固体MAS NMR实验时,样品和NMR插件被装在转子内部,但探头的温度传感器一般安装在转子外部,其测量值无法准确反映转子内部的样品实际温度[19].多年以来,研究人员根据特定原子核(例如,硝酸铅中的207Pb和溴化钾中的79Br等)的化学位移对温度敏感的特性,建立了快速准确测量转子内部固体样品温度的实验方法[20-24].溴化钾(KBr)样品中79Br的化学位移在20~423 K温度范围内符合 T = RT-δ /0.0249(RT表示室温)关系[23],能较好符合布鲁克500 MHz固体NMR谱仪4 mm商业MAS探头的变温范围.而且79Br的共振频率与13C接近,天然丰度为50.69%,无需同位素富集,具有良好的观测灵敏度.因此,本文选用KBr样品温度用于标定插件内部的温度.如表2所示,分别将KBr装填到4 mm插件的不同部位,然后把探头升至不同温度,在8 kHz的转速条件下稳定10 min后测量79Br的化学位移,用于计算此时插件内部的真实温度值.如图4所示,转子插件中部和顶部的真实温度和设定温度较为一致;底部温度通常低于设定温度,当升温至327 K时与设定温度相差10 K左右.这个可能和达到设定温度后的平衡时间有关,延长在设定温度下的平衡时间可以解决这个问题.

表2   插件中不同位置KBr样品受热时化学位移变化

Table 2  Chemical shift distribution of KBr in an NMR insert during variable temperature experiments

TSet/K样品位置
顶部中部底部
δ/ppmTReal/Kδ/ppmTReal/Kδ/ppmTReal/K
300-0.05300.41-0.07301.11-0.06299.11
307-0.26308.84-0.28309.54-0.23305.94
314-0.41314.87-0.42315.17-0.38311.96
321-0.55320.49-0.54319.99-0.48315.98
327-0.62323.30-0.61322.80-0.56319.19

新窗口打开| 下载CSV


图4

图4   不同设定温度和插件内部不同位置的真实温度对比

Fig. 4   Comparison of the setting temperatures and the real temperatures at different position of the insert


2.4 插件性能及适用体系

表3总结了不同材质转子插件性能和适用体系的差异.由于PTFE和PEEK均为聚合物材料,在一些实验条件下会产生1H、13C和19F的背景信号.其中,PTFE结构不含H,因此在1H-13C交叉极化实验中PTFE插件不会产生13C背景信号,仅在对13C和19F进行观测时会产生一定量背景信号干扰,但不会影响对其它核(1H、27Al、29Si、31P、79Br、119Sn等)的观测.PEEK材料中富含H和多种C原子,所以仅适用于除1H和13C之外的多种核(27Al、29Si、31P、79Br、119Sn等)的观测,但PEEK材料热膨胀系数小,稳定性好,因此,在接近极限操作温度(433 K)和压力(618.3 kPa)的实验条件下,PEEK插件的使用寿命更长.

表3   原位固体NMR转子插件性能及适用体系

Table 3  Performance and application of in situ solid-state NMR rotor inserts

插件转速/kHz耐受温度耐受压力适用体系
4 mm PTFE0~10室温~393 K常压~198.6 kPa13C和19F以外的其他原子核观测
7 mm PTFE0~4室温~433 K常压~618.3 kPa
4 mm PEEK0~10室温~433 K常压~618.3 kPa1H和13C以外的其他原子核观测
7 mm PEEK0~4室温~433 K常压~618.3 kPa

新窗口打开| 下载CSV


3 Sn-MFI分子筛上DHA异构化过程的原位固体NMR监测

DHA是一种重要的生物质基平台化合物,在许多生物质(如甘油、葡萄糖和乳酸)等转化升级反应中都会涉及DHA异构化反应[5,25].含金属锡(Sn)路易斯酸中心的MFI分子筛(Sn-MFI)催化剂在DHA异构化反应中具有优异的催化反应活性,然而人们对其反应机理的认识尚不清楚[26].对Sn-MFI分子筛上DHA异构化机制的研究不仅可加深对生物质转化过程的认识,还有助于开发高活性的生物质转化催化剂[27].

本文利用自制固体NMR转子插件,通过原位固体1H MAS NMR谱跟踪了加热条件下Sn-MFI分子筛上DHA异构化过程.通过测试未装填任何样品的PEEK和PTFE插件的1H MAS NMR谱图,发现PEEK插件在δ 0~15范围内具有一个较宽的强背景信号,而PTFE插件仅在δ 1.3处出现一个弱的背景信号.因此,为了避免插件自身的1H信号对样品图谱的干扰,提高谱图分辨率,我们选择4 mm PTFE插件进行实验.将DHA和脱水Sn-MFI分子筛按照1:4质量比装入插件,在布鲁克 500 MHz固体NMR谱仪上进行原位变温1H MAS NMR实验,MAS转速为8 kHz(图5).如图5(a)所示,在反应温度为307 K的1H NMR谱中可观测到δ 0.77、0.97、1.38、1.90和4.76的一系列信号.其中δ 0.77、0.97和1.90的信号同样出现在脱水Sn-MFI分子筛样品的对照谱图中(图5(b)),它们可归属于Sn-MFI分子筛上的不同羟基基团,如位于不同骨架T位上的Si-OH或Sn-OH等.由此可知,δ 1.38和δ 4.76的信号源于DHA反应物分子.

图5

图5   Sn-MFI分子筛上DHA异构化反应过程的原位变温1H MAS NMR谱图:(a)脱水Sn-MFI分子筛和DHA的混合样品;(b)脱水Sn-MFI分子筛. *代表转子的本底信号

Fig. 5   In situ1H MAS NMR spectra of DHA dehydration over Sn-MFI zeolite: (a) mixture of dehydrated Sn-MFI zeolite and DHA reactant; (b) dehydrated Sn-MFI zeolite. * indicates rotor background


同时,δ 4.76的信号强度约为δ 1.38处信号强度的两倍,二者分别归属于DHA分子上亚甲基氢和羟基氢的信号.307 K时,在δ 5.46处还出现了化学吸附水的微弱信号[28],由于在该温度下没有观测到其它产物的信号,因此这不足以说明DHA发生了脱水反应.当温度升至314 K时,出现了δ 3.96和δ 5.08的新信号,而且随反应温度升高,它们的强度表现出同步增涨的趋势.因此,我们推测这两个信号来自同一种产物分子,极可能分别是DHA异构化生成的甘油醛(GLA)的仲碳和醛基上氢原子的信号[29].同时,还观测到了自由态水分子的信号(δ 4.86).升温至321 K时,出现了δ 4.48的GLA烯醇异构体C-C双键上氢原子的特征信号.进一步升高温度到327和334 K,异构化反应进一步加剧,导致产物GLA及其异构体的信号进一步增强,而反应物DHA的信号,尤其是亚甲基上氢原子δ 4.76处的信号明显降低.我们还发现,Sn-MFI分子筛上的不同羟基基团的信号(δ 0.77-1.90)在DHA加热过程中不断降低,而在相同温度范围内单独加热Sn-MFI分子筛时没有观测到这个现象(图5(b)).这可能是由于Sn-MFI分子筛上某些活性羟基基团,如Sn-OH(通常被认为是含锡分子筛上的活性中心)参与DHA异构化过程而被消耗,也可能是由于反应过程中生成的水分子以氢键形式吸附于这些羟基基团导致其不可观测.基于以上观测结果,我们推测,DHA首先会吸附于Sn-MFI分子筛上的Sn-OH活性中心,之后,Sn-OH活性中心上的-OH基团亲核进攻DHA羰基碳原子生成偕二醇类中间体,该转化过程与我们之前报道的Sn-β分子筛上丙酮分子活化过程一致[28]. 随后,偕二醇类中间体的羟基和其亚甲基上氢原子发生脱水反应生成吸附态的甘油醛(GLA)及其烯醇式异构体,进而从催化剂表面水解脱离,同时恢复Sn-OH活性中心,完成催化循环.

4 结论

本文设计并加工了适用于商用固体NMR转子的插件,可用于催化反应的原位固体NMR研究.在4 mm和7 mm布鲁克转子中装入插件后,MAS转速分别可达到0~10 kHz和0~4 kHz,可在433 K最高耐受温度条件下承受最大618.3 kPa的密封压力.利用该插件,通过固体1H MAS NMR实验原位研究了Sn-MFI分子筛上DHA的异构化反应,发现随着反应温度的提高,DHA经过偕二醇类中间体异构化生成烯醇式甘油醛.本工作所设计的NMR转子插件为多相催化反应的原位研究提供了一种新的研究手段.

利益冲突

参考文献

QI G D, YE X D, XU J, et al.

Progress in NMR studies of carbohydrates conversion on zeolites

[J]. Chem J Chinese Universities, 2021, 42(1): 148-164.

[本文引用: 1]

齐国栋, 叶晓栋, 徐君, .

分子筛上糖类催化转化的核磁共振研究

[J]. 高等学校化学学报, 2021, 42(1): 148-164.

DOI:10.7503/cjcu20200500      [本文引用: 1]

葡萄糖、 果糖和木糖等糖类是一类重要的绿色生物质资源, 其高效利用是生物质转化的重要研究方向. 具有Lewis酸性的分子筛在糖类催化转化中表现出优异的性能, 对其活性中心结构、 性质以及反应机理的认识是糖类高效转化研究中亟待解决的关键科学问题. 核磁共振是分子筛上活性中心表征和反应机理研究的重要手段. 本文讨论了先进核磁共振技术与方法在分子筛上糖类转化反应中的应用, 包括催化剂活性中心表征、 催化转化反应机理研究和催化反应产物分析3个方面, 总结了核磁共振在糖类转化反应研究中所取得的新进展并对其未来发展方向进行了展望.

QI G D, WANG Q, XU J, et al.

Solid-state NMR studies of internuclear correlations for characterizing catalytic materials

[J]. Chem Soc Rev, 2021, 50(15): 8382-8399.

[本文引用: 1]

XU J, WANG Q, LI S H, et al.

Solid-state NMR in zeolite catalysis

[M]. Springer, 2019.

[本文引用: 1]

He H Y, Zou Y, Ma Z N, et al.

In situ MAS NMR spectroscopy study on catalytic reaction mechanism of light alkanes

[J]. Acta Phys-Chim Sin, 2004, 20(08S): 1024-1031.

[本文引用: 1]

贺鹤勇, 邹艳, 马卓娜, .

低碳烷烃催化反应机理的固体核磁共振研究

[J]. 物理化学学报, 2004, 20(08S): 1024-1031.

[本文引用: 1]

DENG T Y, HE X H, LIU H C.

Insights into the active acid sites for isosorbide synthesis from renewable sorbitol and cellulose on solid acid catalysts

[J]. Chem Res Chin Univ, 2022, 38(1): 257-264.

[本文引用: 2]

ROMMENS K T, SAEYS M.

Molecular views on Fischer-Tropsch synthesis

[J]. Chem Rev, 2023, 123(9): 5798-5858.

[本文引用: 1]

ZHANG W P, XU S T, HAN X W, et al.

In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach

[J]. Chem Soc Rev, 2012, 41(1): 192-210.

DOI:10.1039/c1cs15009j      PMID:21743940      [本文引用: 1]

In situ solid-state NMR is a well-established tool for investigations of the structures of the adsorbed reactants, intermediates and products on the surface of solid catalysts. The techniques allow identifications of both the active sites such as acidic sites and reaction processes after introduction of adsorbates and reactants inside an NMR rotor under magic angle spinning (MAS). The in situ solid-state NMR studies of the reactions can be achieved in two ways, i.e. under batch-like or continuous-flow conditions. The former technique is low cost and accessible to the commercial instrument while the latter one is close to the real catalytic reactions on the solids. This critical review describes the research progress on the in situ solid-state NMR techniques and the applications in heterogeneous catalysis under batch-like and continuous-flow conditions in recent years. Some typical probe molecules are summarized here to detect the Brønsted and Lewis acidic sites by MAS NMR. The catalytic reactions discussed in this review include methane aromatization, olefin selective oxidation and olefin metathesis on the metal oxide-containing zeolites. With combining the in situ MAS NMR spectroscopy and the density functional theoretical (DFT) calculations, the intermediates on the catalyst can be identified, and the reaction mechanism is revealed. Reaction kinetic analysis in the nanospace instead of in the bulk state can also be performed by employing laser-enhanced MAS NMR techniques in the in situ flow mode (163 references).This journal is © The Royal Society of Chemistry 2012

HUNGER M, WEITKAMP J.

In situ IR, NMR, EPR, and UV/Vis spectroscopy: Tools for new insight into the mechanisms of heterogeneous catalysis

[J]. Angew Chem Int Ed, 2001, 40(16): 2954-2971.

[本文引用: 1]

GOGUEN P W, XU T, BARICH D H, et al.

Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5

[J]. J Am Chem Soc, 1998, 120(11): 2650-2651.

[本文引用: 1]

ZHOU X, WANG C, CHU Y Y, et al.

Mechanistic insight into ethanol dehydration over SAPO-34 Zeolite by solid-state NMR spectroscopy

[J]. Chem Res Chin Univ, 2022, 38(1): 155-160.

[本文引用: 1]

WANG X M, QI G D, XU J, et al.

NMR-spectroscopic evidence of intermediate-dependent pathways for acetic acid formation from methane and carbon monoxide over a ZnZSM-5 zeolite catalyst

[J]. Angew Chem Int Ed, 2012, 51(16): 3850-3853.

DOI:10.1002/anie.201108634      PMID:22389151      [本文引用: 1]

Two ways: a Zn-modified ZSM-5 zeolite catalyst was developed for the reaction of methane with carbon monoxide to directly produce acetic acid under mild conditions (573-623 K), and two different intermediate-dependent reaction pathways were unambiguously identified for acetic acid formation by in situ solid-state NMR spectroscopy.Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

HUNGER M, HORVATH T.

A new MAS NMR probe for in-situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions

[J]. J Chem Soc, Chem Commun, 1995, (14): 1423-1424.

[本文引用: 1]

ADRIAN CARPENTER T, KLINOWSKI J, TILAK D, et al.

Sealed capsules for convenient acquisition of variable-temperature controlled-atmosphere magic-angle-spinning NMR spectra of solids

[J]. J Magn Reson, 1986, 68(3): 561-563.

[本文引用: 1]

HAW J F, GOGUEN P W, XU T, et al.

In situ NMR investigations of heterogeneous catalysis with samples prepared under standard reaction conditions

[J]. Angew Chem Int Ed, 1998, 37(7): 948-949.

DOI:10.1002/(SICI)1521-3773(19980420)37:7<948::AID-ANIE948>3.0.CO;2-L      PMID:29711496      [本文引用: 1]

Only 170 milliseconds are required to cool the catalyst bed by 150 K in the catalytic reactor shown on the right. Thus, NMR spectroscopic investigations can be carried out on products that are formed after very short contact times and under real catalysis conditions.© 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

HU J Z, HU M Y, ZHAO Z C, et al.

Sealed rotors for in situ high temperature high pressure MAS NMR

[J]. Chem Commun, 2015, 51(70): 13458-13461.

[本文引用: 1]

ZHAO Z C, YAO X L, HOU G J.

Reaction pathways of methanol reforming over Pt/α-MoC catalysts revealed by in situ high-pressure MAS NMR

[J]. ACS Catalysis, 2023, 13(12): 7978-7986.

[本文引用: 1]

IVANOVA I I, KOLYAGIN Y G, KASYANOV I A, et al.

Time-resolved in situ MAS NMR monitoring of the nucleation and growth of zeolite BEA catalysts under hydrothermal conditions

[J]. Angew Chem Int Ed, 2017, 56(48): 15344-15347.

[本文引用: 1]

IVANOVA I I, ANDRIAKO E P.

In situ MAS NMR at the service of catalysis by zeolites: From the unraveling catalytic mechanisms towards the elucidation of the mechanisms of synthesis and rational design of zeolite catalysts

[J]. Microporous Mesoporous Mater, 2023, 358: 112363.

[本文引用: 1]

WEHRLE B, AGUILAR-PARRILLA F, LIMBACH H-H.

A novel is N chemical-shift NMR thermometer for magic angle spinning experiments

[J]. J Magn Reson, 1990, 87(3): 584-591.

[本文引用: 1]

CAMPBELL G C, CROSBY R C, HAW J F.

13C chemical shifts which obey the Curie law in CP/MAS NMR spectra. The first CP/MAS NMR chemical-shift thermometer

[J]. J Magn Reson, 1986, 69(1): 191-195.

[本文引用: 1]

KEMP T F, BALAKRISHNAN G, PIKE K J, et al.

Thermometers for low temperature magic angle spinning NMR

[J]. J Magn Reson, 2010, 204(1): 169-172.

DOI:10.1016/j.jmr.2010.02.018      PMID:20227900      [本文引用: 1]

The measurement of temperature in a Magic Angle Spinning NMR probe in the temperature range 85-300K is discussed. It is shown that the shift of the (119)Sn resonance of Sm(2)Sn(2)O(7) makes a good thermometer with shift being given by delta=223 - 9.54x10(4)/Tppm and a potential precision of better than 0.5K over the entire temperature range. The sensitivity is such (e.g. 4.2ppm/K at 150K) that small temperature gradients across the sample can readily be measured. Furthermore, since the spin-lattice relaxation time is very short, measurements can be made in approximately 1s enabling relatively rapid temperature changes to be followed. Values for the chemical shift of (207)Pb in Pb(NO(3))(2) down to approximately 85K are also presented. Although the (207)Pb shift variation is approximately linear near room temperature (we find a slope 0.725+/-0.002ppm/K over the range 293-153K), it clearly deviates from linearity below approximately 130K.Copyright 2010 Elsevier Inc. All rights reserved.

TAKAHASHI T, KAWASHIMA H, SUGISAWA H, et al.

207Pb chemical shift thermometer at high temperature for magic angle spinning experiments

[J]. Solid State Nucl Magn Reson, 1999, 15(2): 119-123.

PMID:10670904      [本文引用: 1]

The temperature dependence of 207Pb chemical shift in magic angle spinning (MAS) NMR spectrum of Pb(NO3)2 provides a sensitive method to calibrate sample temperatures in MAS NMR. The temperature dependence is uniform in the temperature range between 30 degrees C and 400 degrees C. The NMR sensitivity and the line width are also favorable.

THURBER K R, TYCKO R.

Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder

[J]. J Magn Reson, 2009, 196(1): 84-87.

[本文引用: 2]

PAN H, GERSTEIN B C.

NMR of 31P in (VO)2P2O7 as an internal temperature standard in high-temperature NMR

[J]. J Magn Reson, 1991, 92(3): 618-619.

[本文引用: 1]

DE CLIPPEL F, DUSSELIER M, VAN ROMPAEY R, et al.

Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts

[J]. J Am Chem Soc, 2012, 134(24): 10089-10101.

DOI:10.1021/ja301678w      PMID:22550936      [本文引用: 1]

A novel catalyst design for the conversion of mono- and disaccharides to lactic acid and its alkyl esters was developed. The design uses a mesoporous silica, here represented by MCM-41, which is filled with a polyaromatic to graphite-like carbon network. The particular structure of the carbon-silica composite allows the accommodation of a broad variety of catalytically active functions, useful to attain cascade reactions, in a readily tunable pore texture. The significance of a joint action of Lewis and weak Brønsted acid sites was studied here to realize fast and selective sugar conversion. Lewis acidity is provided by grafting the silica component with Sn(IV), while weak Brønsted acidity originates from oxygen-containing functional groups in the carbon part. The weak Brønsted acid content was varied by changing the amount of carbon loading, the pyrolysis temperature, and the post-treatment procedure. As both catalytic functions can be tuned independently, their individual role and optimal balance can be searched for. It was thus demonstrated for the first time that the presence of weak Brønsted acid sites is crucial in accelerating the rate-determining (dehydration) reaction, that is, the first step in the reaction network from triose to lactate. Composite catalysts with well-balanced Lewis/Brønsted acidity are able to convert the trioses, glyceraldehyde and dihydroxyacetone, quantitatively into ethyl lactate in ethanol with an order of magnitude higher reaction rate when compared to the Sn grafted MCM-41 reference catalyst. Interestingly, the ability to tailor the pore architecture further allows the synthesis of a variety of amphiphilic alkyl lactates from trioses and long chain alcohols in moderate to high yields. Finally, direct lactate formation from hexoses, glucose and fructose, and disaccharides composed thereof, sucrose, was also attempted. For instance, conversion of sucrose with the bifunctional composite catalyst yields 45% methyl lactate in methanol at slightly elevated reaction temperature. The hybrid catalyst proved to be recyclable in various successive runs when used in alcohol solvent.

CHO H J, CHANG C C, FAN W.

Base free, one-pot synthesis of lactic acid from glycerol using a bifunctional Pt/Sn-MFI catalyst

[J]. Green Chem, 2014, 16(7): 3428-3433.

[本文引用: 1]

LI L, STROOBANTS C, LIN K F, et al.

Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts

[J]. Green Chem, 2011, 13(5): 1175-1181.

[本文引用: 1]

QI G D, WANG Q, XU J, et al.

Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy

[J]. Commun Chem, 2018, 1(1): 22.

[本文引用: 2]

WISHART D S, KNOX C, GUO A C, et al.

HMDB: a knowledgebase for the human metabolome

[J]. Nucleic Acids Res, 2008, 37(suppl_1): D603-D610.

[本文引用: 1]

/