波谱学杂志, 2023, 40(2): 207-219 doi: 10.11938/cjmr20223034

综述评论

磁共振指纹成像技术及临床应用的进展

黄敏,1,2,*, 李思怡1, 陈军波1,2, 周到1,2

1.中南民族大学 生物医学工程学院,湖北 武汉 430074

2.医学信息分析及肿瘤诊疗湖北省重点实验室,湖北 武汉 430074

Progress of Magnetic Resonance Fingerprinting Technology and Its Clinical Application

HUANG Min,1,2,*, LI Siyi1, CHEN Junbo1,2, ZHOU Dao1,2

1. School of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China

2. Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China

通讯作者: *Tel: 13554286418, E-mail:minhuang@mail.scuec.edu.cn.

收稿日期: 2022-11-14   网络出版日期: 2023-02-16

基金资助: 湖北省自然科学基金资助项目(2020CFB837); 中央高校基本科研业务费专项资金资助项目(CZZ21006)

Corresponding authors: *Tel: 13554286418, E-mail:minhuang@mail.scuec.edu.cn.

Received: 2022-11-14   Online: 2023-02-16

摘要

磁共振指纹(magnetic resonance fingerprinting,MRF)是一种革新性的快速定量磁共振新技术,本文在成像技术和临床应用两个层面对MRF进行了综述. 在成像技术方面,主要从数据采集、字典建立,以及传统量化框架到深度学习量化框架的模式识别这3个步骤进行论述,分析存在的技术难点. 然后对MRF在人体重要部位的临床应用进行了总结,介绍了MRF技术在重复性和再现性方面的验证现状. 最后,本文分析了MRF走向临床存在的各种技术挑战及障碍,对MRF技术未来的发展方向进行了展望.

关键词: 磁共振指纹; 数据采集; 字典建立; 模式识别; 深度学习网络; 临床应用; 可重复性

Abstract

Magnetic resonance fingerprinting (MRF) is a revolutionary new technique for rapid quantitative magnetic resonance imaging. We reviewed the imaging technology and clinical application of MRF in an all-round way. We focus on three technical aspects: data collection, dictionary generation, and pattern recognition from traditional quantitative framework to deep learning quantitative framework. We also analyzed the technical challenges and limitations of MRF. The clinical applications of MRF in various human body regions were summarized, and the current status of MRF technology verification in terms of repeatability and reproducibility was introduced. Finally, we discussed the potential barriers and opportunities for MRF to enter clinical application and envision the future development direction of MRF technology.

Keywords: magnetic resonance fingerprinting; data acquisition; dictionary generation; pattern recognition; deep learning net; clinical application; repeatability

PDF (876KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄敏, 李思怡, 陈军波, 周到. 磁共振指纹成像技术及临床应用的进展[J]. 波谱学杂志, 2023, 40(2): 207-219 doi:10.11938/cjmr20223034

HUANG Min. Progress of Magnetic Resonance Fingerprinting Technology and Its Clinical Application[J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 207-219 doi:10.11938/cjmr20223034

引言

磁共振成像(magnetic resonance imaging,MRI)是一种软组织对比度高的医学影像技术,在临床上发挥着巨大作用.但常规MRI是加权成像,包括纵向弛豫时间(T1)、横向弛豫时间(T2)、质子密度(proton density,PD)和扩散加权等,无法通过一次扫描同时得到组织的多个参数的量化值.而即使是对同一病人进行扫描,MRI扫描设备和成像序列的不同都会造成磁共振图像的灰度值不同.对磁共振图像的评价多依赖于医生的主观性判断,因此这将对放疗涉及的靶区肿瘤分割等图像分析及后处理操作的稳定性产生影响,从而导致基于磁共振图像的临床诊断和治疗决策的不确定性增加、复杂性加剧[1].磁共振指纹(magnetic resonance fingerprinting,MRF)技术可以突破这种局限性.MRF采用特殊的数据采集、后处理和可视化方法,只需一次扫描便可对组织的多个特性参数进行同时量化,提高了MR研究的灵敏度和特异性,给临床诊断带来一种全新的方法.

MRF是一种革新性的定量磁共振新技术.2013年,凯斯西储大学生物医学工程系的Ma和Griswold博士等[2]首次在《Nature》上发表了关于MRF技术的论文.MRF通过单次扫描,可同时获得组织参数(T1T2、PD等)和系统参数(主磁场不均匀度B0*、射频场不均匀度B1*等)的量化值,从而实现快速稳健的多参数量化成像[3],更准确的体现组织间的差别.基于MRF获得的组织特征如同人的指纹一样具有唯一性,更有利于临床疾病诊断.而且,基于与人工智能(artificial intelligence,AI)结合的定量检查可以制定更个性化的疾病诊疗方案[4].

在MRF以往的综述论文中,主要是从传统模式识别框架[1,3-5]进行论述,或者针对MRF在单个部位(如心脏[6])的应用进行讨论.本文对MRF的成像技术和临床应用进行了较全面地综述.第一部分讨论数据采集、字典建立,以及MRF传统量化框架和最新出现的深度学习(deep learning,DL)量化框架的两类模式识别方法,分析各步骤中存在的技术难点.第二部分对MRF在人体重要部位的临床应用进行了总结.第三部分针对MRF技术的重复性和再现性等多方验证进行论述.第四部分分析MRF走向临床存在的各种技术挑战及障碍,对MRF成像未来的研究和发展方向进行了展望.

1 MRF成像技术的进展

不同于常规MRI技术,MRF技术在数据采集和数据处理方面都独树一帜,主要包含3个步骤:数据采集、字典建立、模式识别.首先进行数据采集,即采用快速脉冲序列和欠采样轨迹采集原始数据.然后实现字典建立,即根据数据采集的序列参数和组织的待量化参数范围,生成字典信号条目和参数表.最后完成模式识别,即对采集数据进行重建得到空间每个体素的指纹,将指纹和字典信号进行匹配,再从参数表获得量化值.

1.1 数据采集

实现MRF数据的快速采集需要设计独特的脉冲序列,其必须对组织参数(T1T2等)有很强的敏感性.为保证空间和时间的非相干性,MRF扫描时采用多组伪随机变化的翻转角(flip angle,FA)、回波时间(echo time,TE)和重复时间(time of repetition,TR)组成的脉冲序列;在时间维尽可能多的扫描(500~3 000组),且TR值很短(为十几毫秒).而常规MRI只采用一组固定的FA和TR,TR为几毫秒至几千毫秒.

MRF技术首次提出时采用的是基于反转-恢复的平衡自由稳态进动序列(balanced steady state free precession,bSSFP),在Siemens Espree 1.5 T扫描仪上对大脑进行数据采集[2],该序列在Siemens公司也被称为真稳态进动快速成像序列(true fast imaging with steady state precession,True FISP).TR选取为10.5~14 ms,TE为TR的1/2,螺旋欠采样因子为1/48,单支螺旋采集时长为5.8 ms.12.3 s(时间维1 000组)扫描一层128×128的数据.该序列采集的信号的信噪比(signal to noise ratio,SNR)高,但对磁场不均匀度敏感,容易引起黑带伪影;可用于量化T1T2B0*,但不能量化B1*.

2015年,Jiang等[7]采用基于梯度回波的普通稳态进动快速成像序列(fast imaging with steady state precession,FISP),在Siemens Skyra 3 T扫描仪上对大脑加速扫描,该序列也被称为自由稳态进动序列(steady state free precession,SSFP).采用2 ms的超短TE,随正弦变化的FA,带Perlin噪声的TR(11.5~14.5 ms),单支螺旋欠采样,时间维1 000组.13 s扫描一层256×256的数据,空间分辨率更高.该序列对偏振影响不敏感,不会出现bSSFP图像中的黑带伪影.但采用FISP序列采集的MRF信号不如bSSFP序列的信号那么平滑,SNR更低;而且FISP采用非平衡梯度,T1T2量化精度比bSSFP序列稍低(低1%).采用FISP序列使MRF技术能拓展到大脑以外的其他成像部位,例如,对腹部进行屏气扫描.此序列可用于量化T1T2,不能量化B0*.若还要量化B1*参数,可在FISP序列末尾引入90o-0 o的交替FA,增加序列对B1场不均匀度的敏感性[8].

MRF除了最常用的bSSFP和FISP序列外,还可采用射频破坏梯度回波序列[9]来同时测量T1T2*,该序列的TE在14~75 ms内平滑变化,FA变化与FISP序列相同,适合采用单次回波平面成像(echo planar imaging,EPI)采集数据,但不能测量T2.

MRF序列在MRF成像中至关重要,但序列设计时FA和TR参数可以随机变化任意组合,有无数可能性,如果都在仪器上进行实验来对比序列性能是不现实的.有研究者提出了各种序列优化方法.Kara等[10]和Sommer等[11]向指纹中添加高斯噪声来仿真模式匹配中存在的混叠噪声,结合欠采样轨迹进行模拟采样和模式识别,比较不同序列的量化结果,从而优化序列.后者[11]通过内积最小化和蒙特卡罗模拟研究了MRF序列的编码能力.Zhao等[12]提出Cramer-Rao下限优化法,采用克拉美罗下限(Cramer-Rao lower bounds,CRLB)代价函数分析MRF序列对量化准确度的性能影响,寻找无偏估计的方差下限.该方法被MRF领域用于优化FA和TR模式,以实现最佳序列设计.2022年,Heesterbeek等[13]利用微扰理论数学模型预测欠采样引起的误差.通过不断调整FA来实现MRF序列优化,抑制MRF模式识别中的欠采样误差.他们用活体扫描比较了优化序列[13]、传统正弦FA模式序列[2]、CRLB序列[12]这三者与标准值的定量误差,结果显示优化序列的误差最小(T1:5.6% ± 2.9%,T2:7.9% ± 2.3%),传统序列次之,CRLB序列最大. Jordan等[14]则采用基于物理模型的DL网络给出优化方向.损失函数采用大脑模型参数值与量化参数值之间的均方误差,并将扫描时间作为一项约束条件.普通序列的FA按正弦变化,TR在11~13 ms小范围变化;优化序列为FA局部正弦,并在TR中加入剧烈扰动.结果显示优化序列得到的MRF信号更有区分度,在活体扫描中消除了训练时的量化伪影.

MRF扫描速度很快,通常采用单支螺旋轨迹进行k空间欠采样[2],或者径向星状轨迹的欠采样模式[15],它们采集的信号在时-空上都具有非相关性.也有少数采用笛卡尔轨迹(如EPI等)进行欠采样[9].虽然k空间高倍欠采样(如螺旋轨迹1/48)提高了MRF的效率,但也会导致很强的空间混叠伪影.

1.2 字典建立

字典为仿真的指纹时间信号.根据成像部位(大脑、心脏和血管等)的组织特性(T1T2、血管容积等)、MRI扫描系统特性(B0*B1*等)、所采用的脉冲序列(bSSFP、FISP等),以及FA、TE和TR值,可以按照Bloch方程仿真[2]或者扩展相位图[7]生成字典信号.字典应覆盖成像部位的组织特性所包含的参数范围,比如大脑1.5 T MRF的T1T2成像,字典的T1参数范围可取100~3 000 ms,T2可取10~500 ms,B0*带来的偏振频率取-400~400 Hz,并限制T1 > T2.扫描时,一旦改变系统脉冲序列的物理参数值,就需重新建立字典.

字典大小决定了后续量化的精度和速度,而字典大小不仅取决于不同任务待量化参数(T1T2、血管容积、B0*B1*等)的数目以及参数的间隔,还与脉冲序列时间维长度相关.比如T1间隔取10 ms时,会比T1间隔取20 ms时建立的字典约大一倍.每增加一个量化参数,字典大小即呈现几何级增长[15].基于bSSFP序列的大脑MRF成像时,字典模拟3个参数(T1T2B0*),组合条目可达36万条,需2.5 GB存储空间.B1场的不均匀也会导致T1T2的量化受到影响,对T2影响更甚[8].若在字典中增加B1*的信息,可提高T1T2的量化精度;但字典会更庞大,运行时也占内存,指纹与字典信号匹配时间随字典大小线性增长,速度极慢.

上述基于弛豫物理模型的方式建立字典很耗时,采用DL网络则可大大加速字典建立.Yang等[16]采用无监督生成对抗网络(generative adversarial network,GAN)来模拟复杂的Bloch方程,将大脑MRF字典建立时间缩短了几个数量级(从小时级别到0.3 s).若GAN网络的输入加入RR间期(R-R interval,RR)信息,扩展到单次屏气的心脏MRF中将意义非凡[17],因为心脏MRF成像时,每个样本都要单独实时建立字典.

1.3 模式识别

将欠采样的多组k空间原始数据,经空间域重建后沿时间维得到一系列图像.将单个体素的时间维信号连起来,就得到一条特有的MRF信号.MRF传统框架[2]的模式识别,就是将该指纹信号与字典库中的所有信号进行模式识别,找到最匹配(最相似)的字典信号条目.再根据参数表得到对应的组织参数和系统参数的量化值,显示T1T2B0*等的定量图像.但这种框架量化速度较慢,很难让MRF实现临床落地.近年来,基于AI的DL网络开始被尝试用于MRF领域,大大加快了量化的效率,有望突破临床应用的瓶颈[4].

1.3.1 基于传统框架的字典量化方法

传统的MRF量化框架都是基于字典的.先根据Bloch方程按照参数组合建立各部位的字典信号(指纹库),然后将指纹信号与字典的每条信号进行匹配,得到对应的组织和环境参数信息,最后绘制成参数图像.

2013年,Ma等[2]最早采用的是直接匹配法,即指纹信号与归一化字典中的每条信号进行复数内积,内积幅值最大的那条即为识别信号,体素的PD则根据指纹信号和未归一化的匹配信号之间的比例因子来计算.但Ma等[2]对欠采样数据采用非均匀傅里叶变换(non-uniform Fourier transform,NUFFT)进行重建后的图像有严重的折叠伪影,指纹时间信号SNR低,而且采用简单的内积会使量化精度降低.量化精度还与字典大小有关,因为基于字典框架的量化得到的参数值只能是字典中的离散值,但字典大小总是有限的,因此会存在误差.而字典建太大,量化效率又降低.而且该方法要遍历所有字典信号,因而量化速度很慢.为了减少计算量,可通过奇异值分解(singular value decomposition,SVD)[18]等方法来缩短数据长度,将时间域指纹信号和字典都进行压缩.还可采用低秩子空间[19]等方法提高量化速度,但量化精度会受到影响.2015年,Ma等[20]又采用分组匹配法来提高效率.将字典分成多组,先与各组的平均信号进行匹配找到组别,再在组内和每条信号内积.分组加快了识别速度,但降低了量化精度.Christopher等[21]采用加速迭代重建(accelerated iterative reconstruction,AIR)进行MRF成像,融入了正则化项、指纹压缩和加速搜索进行模式识别.2019年,Wang等[22]提出采用快速字典搜索法MRF-ZOOM来加速量化过程.Cruz等[23]使用正则化的低秩高维补丁张量来去除心脏MRF中的运动伪影,提高了重建图像和参数量化的质量,但又增加了计算成本.

上述针对基于字典的量化框架的各种改进,会加剧字典建立和图像重建的复杂性,并增加对序列优化的需求.而MRF在量化速度和精度上的矛盾,使其很难在临床落地.

1.3.2 基于DL的量化方法

采用DL网络进行预测,代替基于字典的模式识别过程,可以克服传统MRF量化方法的缺点,其优点包括:φ量化值是连续值,而不是离散值,精度更高;κ网络训练好后,不再需要存储字典;量化速度超快,实现了高效率预测. 目前研究表明,各向同性分辨率为1 mm时,全脑T1T2的MRF量化仅需7 min[24].

根据网络输入端信号的不同,量化方法主要有两大类,分别为基于输入信号为时间域指纹信号的DL量化方法和基于输入信号为空间域图像信号的DL量化方法.

1.3.2.1 基于时间域指纹信号的DL量化方法

基于时间域指纹信号的DL量化方法如图1所示.量化网络代表一种映射关系:$y=f(x)$.其中f表示量化网络;x为网络输入,即单体素的时间域幅值信号(指纹信号);y为输出的T1T2等参数的量化值.

图1

图1   基于时间域指纹信号的深度学习量化方法示意图

Fig. 1   Diagram of DL quantification method based on time domain fingerprint signal


将组织参数T1、T2作为训练标签,即金标准.先将标签值送入仿真器生成字典信号,作为网络训练的输入信号.再设计网络结构,设置损失函数,对网络进行训练,确定网络的各种参数.然后将磁共振扫描仪的采集数据作为测试信号送入网络,得到每个像素的组织参数的逐点预测值T1°、T2°,并显示出参数量化图像.

(1)基于全连接网络的监督回归方法

2017年,Hoppe等[25]率先用全连接网络(fully convolutional network,FCN)来训练一维(1D)指纹信号与T1T2组织参数之间的映射关系,实现参数的监督回归.Peng等[26]采用四层FCN网络,在训练时加入仿真的伪影和噪声,提高了网络的鲁棒性,预测时间只需0.12 s(传统字典匹配耗时28 s).他们对活体大脑、肝脏和前列腺腺癌的扫描数据进行了测试,得到较高质量的T1T2定量图像.但当组织参数超过2时,非线性映射太复杂,FCN网络待训练参数太多,容易产生梯度爆炸.特别是心脏MRF的网络输入端需添加RR间期[27],输入单元数剧增,目前只在仿真数据上进行实验.

为了减少FCN网络的待训练系数,Cohen等[28]设计了深度重建网络(deep reconstruction network,DRONE).先将字典数据进行SVD压缩,将指纹长度由1 000缩至25送入网络输入端.采用近8万条字典数据训练1 000轮,共约10 min.用大脑仿真数据做测试,预测只需10 ms,比传统框架的字典量化方法快300倍.

(2)基于卷积神经网络的监督回归方法

2018年,Hoppe和Siemens团队[29]受语音信号和自然语言处理网络的启发,采用基于1D卷积神经网络(convolutional neural network,CNN)的4层简单网络来量化参数值,如图2所示.先通过1D卷积对指纹进行特征提取,再通过全连接实现决策策略.网络输入层为长度1 000(或更长3 000)的指纹信号,首先经过3个卷积层(步长为2,特征数为32、64、128)得到指纹的多个特征,再将特征数据展平后送入后续的 1个全连接层,输出T1T2两个参数值.用4层简单网络对NIST phantom模型的仿真信号进行预测的准确度很高,但对真实的磁共振扫描仪采集信号进行测试时,CNN网络量化失败,参数图看不清任何组织结构.

图2

图2   基于1D CNN的MRF量化网络

Fig. 2   MRF quantization network based on 1D CNN


为提高网络的泛化能力,Hoppe等[29]又在网络中加入头部采集数据再训练.在12万条字典数据上增加了6层轴位数据共39万条带噪声的指纹信号,然后对轴位、矢状位和冠状位数据进行测试,结果表明网络对轴位数据的预测准确度高,而其他方位失败,说明该网络对不同方位头部数据的泛化能力差;将4层网络扩展到12层复杂模型,结果仍未改进.这是由于真实的MRF数据高度欠采样,用简单的NUFFT进行空间重建后,每帧图像有严重的伪影,指纹时间信号因此含有大量噪声.如果将该指纹信号直接送入DL网络,会与训练数据中的无噪声数据相差很大,预测结果也会很差.

Song等[30]提出的混合深度磁共振指纹(HYbrid deep magnetic resonance fingerprinting,HYDRA)网络包含两个步骤:基于模型的信号恢复和基于DL的参数预测.HYDRA网络先使用基于低秩的去锯齿技术实现多帧空间图像的去伪影化(类似磁共振图像高质量重建),从而使每个像素点的指纹信号的SNR大大提高.去噪后的指纹信号经非局部残差CNN网络实现更准确的参数预测.采用扩展相位图对基于FISP序列生成的MRF数据进行训练,然后对模型数据和活体数据进行测试,预测准确度大大提高.T1量化误差从DRONE网络[28]的4.5 ms和CNN网络[29]的2.5 ms降至0.2 ms,T2量化误差则分别从0.7 ms和8.6 ms降至0.2 ms.而且,MRF的时间帧从1 000缩小至200,缩短了采集时间.

k空间欠采样会使一个像素的信号分布到周围多个像素中,因而相邻组织具有相关性.2020年,Balsiger等[31]提出空间正则化参数图重建网络,采用了15×15小块的时间信号作为CNN网络的输入,以块中心体素的值为金标准.结果显示虽然输入单元数增加,但预测准确度高.

以上网络的输入均为MRF复数信号中的幅值部分(模),不仅丢失了相位信息,也不能体现MRF数据的实部和虚部信息.Virtue等[32]将1D实数卷积网络改成复数卷积网络.将复数信号输入网络,采用复数卷积运算,并引入对相位敏感的心形激活函数,得到了比幅值网络预测准确度更高的T1T2B0*量化图像.这表明复数值输入的效果胜于幅值输入.

(3)基于邻域块数据的循环神经分位数网络

前述网络只将单点指纹信号作为输入,一旦出现强噪声,量化值会出现很大误差.而循环神经网络(recurrent neural network,RNN)能记忆序列中的时间结构,结合中心像素邻域点的组织具有相似性的特点,采用邻域块数据作为RNN的输入,中心像素的参数值作为网络输出的参考值.2019年,Hoppe等[33]采用RNN进行MRF量化,基于LSTM (长短期记忆网络)+ FCN(4个)+quantile layer(分位数层)的网络结构.他们将1×1单像素的指纹信号作为CNN网络与RNN网络的输入,得到两个网络的验证损失分别为470 ms和269 ms,表明RNN网络胜于CNN[33].再将1×1单像素和3×3小块9个像素的指纹信号分别作为RNN网络的输入,验证损失分别为269 ms和221 ms,表明邻域多点输入胜于单点输入[33].可见,用邻域MRF信号作为RNN输入,可以去除采集噪声对量化带来的干扰,并利用分位数防止异常值的出现,可以提高网络拟合的稳健性.

1.3.2.2 基于空间域图像信号的DL量化方法

基于空间域图像信号的DL量化方法中网络的输入为图像,而不是时间域指纹信号.基于时间域指纹信号的DL量化方法的最大挑战在于指纹中的伪影带来的干扰.2020年,Hoppe等[34]将两个网络进行级联,先把带噪声干扰的图像信号送入第一个U-Net网络“清洗噪声”,再将每个像素点的“干净”的指纹信号送入第二个CNN网络进行预测,以达到伪影去除和参数回归的双重功能.如图3所示,首先输入经SVD压缩的100幅带伪影的时间序列图像后,采用U-Net网络在图像域去除伪影,输出无伪影图像.这一步类似MRI的深度重建网络,只是MRF的U-Net网络的输入和输出端图像多达100幅.再对去噪后的MRF指纹信号采用简单的4层CNN做参数回归,可得到很好的T1T2量化结果.

图3

图3   基于空间域图像信号的DL量化方法示意图

Fig. 3   Diagram of DL quantization method based on spatial domain image signal


Fang等[35]提出一种空间受限的量化方法,使用了两个网络相级联.先用特征提取模块提取时间域低维特征,再通过空间约束量化模块.网络从特征图像输入直接得到组织参数图输出,是端对端的网络模式,而不再是逐点量化的方式.该网络只需使用原始指纹时间序列的前1/4时间点就可对T1T2准确量化.

由于各自使用的数据集在序列和采集部位等方面都有所区别,因此很难全面比较以上各种DL网络之间的性能优劣.期待能有公开的标准化的MRF数据集出现,以便跨模型比较.

2 MRF临床应用的进展

MRF数据采集和字典建立的灵活性,使之可用于神经系统(大脑)、腹部、肌肉骨骼系统、心脏等部位成像.目前,临床上已获得T1T2、PD、T2*B0*B1*、脑血容量(cerebral blood volume,CBV)、血氧饱和度(saturation oxygen,SO2)、细胞外容积(extracellular volume,ECV)等多种参数的量化图[36].MRF在各部位具有代表性的临床疾病应用示例如图4所示,分别为脑部胶质瘤[37]、癫痫[38]、肝脏转移瘤[39]和乳腺导管癌[40]的MRF图像.

图4

图4   MRF临床疾病应用示例. (a)胶质瘤[37];(b)癫痫[38];(c)肝脏转移瘤[39];(d)右乳浸润性导管癌[40]

Fig. 4   Examples of MRF application in clinical diseases. (a) gliomas[37], (b) epileptic lesions[38], (c) liver metastase[39], (d) invasive ductal carcinoma of right breast[40]


2.1 大脑

脑部MRF有助于脑肿瘤的检测、分类和分级、手术效果预测,以及治疗计划制定的全套流程的实施.而且MRF对癫痫病灶的特异性强,诊断准确性远高于MRI.

Ma等[2]在2013年提出MRF技术时,对人的大脑进行轴位2D扫描.单层扫描时间为12.3 s,字典约为56万条,获得T1T2、PD及B0*量化图像,分辨率为2.3×2.3 mm2.2021年,Cao等又在大脑的轴位、冠状位和矢状位实现了更高分辨率的全脑2D MRF成像[41].单层扫描时间为20 s,分辨率为1×1 mm2.并在量化图像基础上,根据不同组织的参数范围,得到了白质、灰质和脑脊液的三种组织的分割图像.这种分割只需采用阈值法即可实现,而传统磁共振图像由于不同加权像的灰度值不同,很难采用阈值法进行分割.

Badve等[37]对三种轴内脑肿瘤(胶质母细胞瘤、低级胶质瘤和转移瘤)进行MRF研究,发现不同肿瘤周围白质的T1T2有很强的特异性.T2均值可用于区分低级胶质瘤的实体瘤区域和转移瘤,分别为172和105 ms(相差约70 ms).T1均值可用于区分胶质母细胞瘤和低级胶质瘤,分别为1 578和1 066 ms(相差约500 ms).脑部胶质瘤的T1值高于周围正常组织,如图4(a)中红色箭头所示.

癫痫临床诊断的挑战性很大,需要对微小病灶进行高分辨率识别.Ma等[38]对皮质发育不良的癫痫患者进行3D MRF研究,发现癫痫结节区域组织的T1升高,如图4(b)中绿色箭头所示.而且MRF还显示了某些癫痫患者大脑的T2加权图像中看不到的病变特征,例如他们大脑右边灰质中出现了T1高亮区域,但T2无明显变化.手术去掉该区域后,病人不再癫痫发作.Liao等[42]利用MRF技术进行癫痫诊断,33例患者只有1例误诊,而MRI误诊高达10例.可见,MRF技术可以提高癫痫临床诊断的准确率,有助于癫痫治疗.

2.2 腹部

目前,腹部MRF已对肝、胆、肾、胰腺等的组织参数进行了量化,量化结果与传统的金标准量化方法的参数值吻合度较高,并已初步应用到肝病、胰腺癌等的临床诊断中.

尽管MRF在静态脑成像中应用前景很好,但应用到腹部时却存在很多困难:由于存在呼吸运动,临床腹部MRF扫描要求在一次屏气中完成,扫描时限较短;扫描视野大至40~50 cm,小病灶的检测对空间分辨率的要求也更高;B0B1场的不均匀性也使腹部定量成像面临更大挑战,特别是当场强达到3 T及以上时.

Chen等[39]在19 s的一次屏气时间内对腹部进行2D MRF扫描.为减小3 T B0场不均匀性带来的影响,他们采用FISP序列,时间维500组,并在字典加入B1*进行校正,获得了无症状者和肝病患者的T1T2B1*腹部定量图像.由此得到的正常人腹部肝、胆、肾等的T1T2值和文献参考值一致,而肝脏转移瘤患者的两个转移灶处T1值升高明显,如图4(c)中白色箭头所示.MRF诊断比常规MRI更具特异性,证明了MRF在腹部的临床可行性.

2021年,Riel等[43]采用自由呼吸MRF方法在Siemens Prisma 3 T扫描仪上获得腹部三维T1定量图.他们采用了k空间径向星状轨迹,提高MRF的运动鲁棒性;并使用CRLB方法优化FA,比较了时间维为四种不同帧数(300、600、900和1 800)的序列编码效率.采用体模,对静止和周期性运动下的序列进行评估后,得出帧数为600时T1量化值最优;然后对志愿者进行5 min自由呼吸的腹部扫描,得到了干净的T1定量图.

2021年,Subashi等[15]采用基于黄金角径向采样轨迹的SSFP序列对腹部进行1.5 T MRF成像.扫描参数如下:TR/TE=8/4 ms,反转时间(inversion time,TI)=15 ms,视野(field of view,FOV)=25×25 cm2,矩阵=224×224.加入全变分和主成分分析(principal components analysis,PCA)作为时域正则化函数,并采用黄金角径向稀疏并行(golden-angle radial sparse parallel,GRASP)重建算法.采用国家标准与技术研究院(national institute of standards and technology,NIST)体模扫描,得到的T1T2与金标准值一致性高.他们还分析了健康志愿者在自由呼吸期间的图像质量,结果显示T1图消除了运动伪影.GRASP为自由呼吸MRF提供了一种可行方法,可降低扫描数据对生理运动伪影的敏感性,提高参数图像质量.

2020年,Jaubert等[44]在1.5 T MRI扫描仪上进行肝脏MRF成像.采用黄金角径向轨迹的梯度回波序列和单次屏气14 s扫描,进行T1T2T2*和脂肪分数(fat fraction,FF)四参数量化;使用低秩张量约束重建来拟合T2*B0,并分离水和脂肪信号;通过字典匹配获得水和脂肪的T1T2T2*和PD,FF从PD图中提取.他们分别以标准T1T2体模、水脂体模、健康和血管瘤受试者为研究对象,对该方法进行了评估.其结果与传统方法相比,活体肝脏 MRF的T1T2T2*值偏差分别为92 ms、-7.1 ms、-1.4 ms.该研究初步证明了肝脏MRF的临床可行性.

2020年,Serrao等[45]研究了1.5 T和3 T下自由呼吸状态的胰腺MRF参数量化的临床可行性.他们对16名健康者进行2.4~3.6 min的扫描,在胰腺等多个实体器官中绘制了感兴趣区域,确定T1T2值.结果显示在1.5 T和3 T时,胰腺T1均值比肌肉、脾脏和肾脏低37%~43%;在1.5 T时,胰腺T2均值比它们低40%;在3 T时,胰腺T2均值比它们低 12%.这初步体现了胰腺MRF成像在临床中的诊断价值.

2.3 乳腺

乳腺MRF成像将有助于乳腺癌的准确检测.Chen和Ma等[40]通过对健康和乳腺癌女性进行3D全乳扫描,在临床开展了快速3 T乳腺MRF成像研究.空间分辨率为1.6×1.6×3.0 mm3,扫描需6 min.基于此量化了T1T2参数,还采用 Bloch-Siegert方法评估了MRF扫描对B1场的敏感性.结果显示与正常乳腺组织相比,MRF在浸润性导管癌位置出现更高的T1T2值,尤其是病变组织T2值大幅增加,如图4(d)中白色箭头所示.Nolte等[46]则研究了B1场不均匀性、层面轮廓以及扩散效应引起的乳腺T1T2的量化误差,并分析了电子噪声和螺旋混叠伪影对量化结果的影响.

2.4 心脏

心脏磁共振指纹成像(cardiac magnetic resonance fingerprinting,cMRF)可对心肌组织进行量化,对心血管疾病进行早期诊断[47].但是相比其他部位,cMRF面临更多更大的挑战.由于呼吸和心跳的双重影响,cMRF序列需在一次屏气下完成,并使用心电门控触发扫描,在每次心动周期舒张末期这段时间窗(240~280 ms)实施信号采集[48];另外,cMRF字典需要RR间期,而且每个病人需单独建立字典.

2017年,Hamilton等[49]实现了单层的T1T2和PD的量化.在每次心跳的时间窗采集48个时间帧信号,每个时间帧采用高度欠采样的单支变密度螺旋轨迹采集数据.在16次心跳中采集768帧共耗时约16 s.为减少匹配时间,多线圈图像采用了PCA进行压缩,而时间维指纹数据采用了SVD进行压缩.但单层cMRF对心脏的扫描范围有限,容易漏检病灶.2019年,他们将心脏MRF扩展成同步多层扫描,在1次屏气16 s内同时得到3层扫描数据,大大提高了成像效率[50].

2020年,Hamilton等[51]又在1.5 T Siemens Aera扫描仪中对多名健康受试者进行了更深入的临床实验.在15次心跳中(255 ms采集窗)耗时约15 s完成1层数据采集.FOV为300×300 mm2,量化矩阵为192×192,分辨率为1.6×1.6×8.0 mm3.他们比较了cMRF与MOLLI序列测量T1T2-prepared bSSFP序列测量T2之间的差异(后两者是传统的两种速度很慢的标准心脏定量技术),结果显示cMRF精度略低,但cMRF量化图像在T1T2特征的得分都高于传统序列.

2022年,Velasco等[52]结合AI技术和神经网络,优化cMRF扫描序列,将时间维度减少到480帧.并采用DL网络,将字典建立时间和图像重建时间减少了几个数量级.在单次呼吸控制中,采用16˚内的小FA,得到了心肌T1T2定量图.该方法提高了心脏MRF的准确性、效率和稳健性,有助于攻克MRF进入临床的瓶颈.

Jaubert等[53]提出了不需要心电门控触发的cMRF自由运行采集方式.借助并行成像、低秩建模和正则化重建方法,在健康者中得到了较好的T1T2定量参数,但心脏MRF电影分辨率不佳.

上述cMRF扫描方式都需要屏气,但临床上不是所有病人都能完美配合,这甚至会导致检查失败.若能在自由呼吸下完成3D cMRF扫描是最理想的,但该技术难度较大.2020年,Cruz等[54]尝试了该项研究.采用呼吸运动补偿技术,7 min完成了全心的T1T2定量成像,获得了与临床标准相当的准确度.

综上所述,诸多临床应用加速了MRF技术走向临床的进程.MRF能准确量化组织参数,不会因仪器改变出现对比度的强烈变化,可使疾病诊断更加准确和标准化,但MRF在各部位的临床应用仍面临诸多挑战.

3 MRF技术的多方验证

MRF这种革新性的定量成像新方法,必须在量化的准确性、精度、可重复性和可再现性等方面得到保证,才能推向临床[55].Ma和Siemens公司首先在Siemens内部的磁共振扫描仪上进行横向比较[56].采用NIST体模进行验证,体模含有T1T2和PD的宽范围金标准值.在内部5个站点的两种型号的磁共振扫描仪上,使用FISP序列连续34天扫描,结果显示T1T2的估计值变化小于5%,初步证明了MRF的高准确性和可重复性.

2019年,Körzdörfer等[57]在Siemens 4个站点10台3 T磁共振扫描仪上对10名健康者大脑进行FISP序列MRF成像,实验在Siemens内部的同一扫描仪上和不同扫描仪之间进行多次扫描,根据T1T2量化值,来验证MRF的可重复性和可再现性.他们用相对偏差(relative deviation,RD)证明了可重复性(T1-RD为2.0%~3.1%;T2-RD为3.1%~7.9%,)和可再现性(T1-RD为3.4%;T2-RD为8.0%).2020年,Yokota等[58]在Siemens 3 T上进行FISP序列的2D MRF技术的评估.对41名和28名两组受试者大脑进行扫描,研究两组扫描之间的一致性和组内扫描的重复性.将时间维从3 000减少到1 500,测试从41 s到20 s加速扫描对量化的影响.结果显示两种长度下组内的感兴趣区域的量化值都具有高重复性,长度1 500的T1T2量化值比3 000时稍高(不到1%).

2019年,Buonincontri等[59]在GE两个站点的5台磁共振系统上(3台1.5 T和2台3 T)进行了2D MRF技术验证.对9名志愿者大脑进行FISP扫描,他们用变异系数(coefficient of variation,CV)证明了重复性(T1-CV:2%~3%;T2-CV:5%~8%)和再现性(T1-CV:3%~8%;T2-CV:8%~14%).2021年,他们又在GE的8台磁共振系统上(5台1.5 T和3台3 T)进行了3D MRF技术验证[60].对12名健康者进行测试,证明了高重复性(T1变异系数CV:0.7%~1.3%;T2:2.0%~7.8%)和高再现性(T1:2.0%~5.8%;T2:7.4%~10.2%).3D MRF与2D相比,T1T2精度都有所提高,进一步对MRF迈向临床应用提供了技术支撑.

4 总结与展望

MRF是一种效率很高的多参数定量成像技术.它的数据定量,通用性强,可以在其它的磁共振仪器中使用,而常规MRI则不行.MRF的最终目标是实现标准化的组织磁共振表征,创建各部位(如健康人大脑、心脏等)的标准组织参数库,并实现临床诊断流程的标准化.

但MRF技术转化到临床应用的进程仍然较慢,离临床可接纳度还有较长的距离,而且MRF领域还存在很多技术挑战.φ需要复杂的脉冲序列进行数据采集,以及足够大的字典和计算能力来处理数据.迄今为止,尚无供应商提供一套FDA批准的通用扫描协议.κ由于MRF技术还未实现商业化和医学伦理等原因,MRF领域可用的公开数据集很稀少,并且临床测试数据严重不足,这导致各种DL网络的性能很难被跨模型多方验证、比较和改进.脉冲序列、图像重建以及量化方法的通用性没有得到全面验证.Siemens和GE两家为数不多的重复性验证工作也只是在健康志愿者大脑上进行,然而只有在各种疾病患者和不同组织中进行大量测试,得到的数据在临床有效范围内才具有说服力,进而才有可能将MRF推向临床.当然,临床和供应商也可能会考虑其他因素,如临床是否有必要使用MRF定量成像代替已使用20多年的MRI加权成像;医师们是否能接纳一种全新的成像模式和诊断流程;供应商推出MRF产品后,MRI产品收益是否会降低等.

基于DL的MRF量化方法刚起步,这与DL在其他领域的应用有很大区别,需要考虑不同部位的的输入信息复杂度的不同,例如心脏比头部更复杂,需要融入RR信息[52].随着性能更强网络的涌现,可以尝试UNet++等新网络[61],也可根据MRF成像的物理原理合成智能数据用于训练[62],以提高量化的准确度和鲁棒性.

总之,MRF是一种全新的快速定量成像技术,各方面都有待提高和完善.期待在不久的将来,会有MRF产品的问世,临床也再添一项强大的影像检查模式.

利益冲突

参考文献

PANDA A, MEHTA B B, COPPO S, et al.

Magnetic resonance fingerprinting-An overview

[J]. Curr Opin Biomed Eng, 2017, 3: 56-66.

DOI:10.1016/j.cobme.2017.11.001      PMID:29868647      [本文引用: 2]

Magnetic Resonance Fingerprinting (MRF) is a new approach to quantitative magnetic resonance imaging that allows simultaneous measurement of multiple tissue properties in a single, time-efficient acquisition. The ability to reproducibly and quantitatively measure tissue properties could enable more objective tissue diagnosis, comparisons of scans acquired at different locations and time points, longitudinal follow-up of individual patients and development of imaging biomarkers. This review provides a general overview of MRF technology, current preclinical and clinical applications and potential future directions. MRF has been initially evaluated in brain, prostate, liver, cardiac, musculoskeletal imaging, and measurement of perfusion and microvascular properties through MR vascular fingerprinting.

MA D, GULANI V, SEIBERLICH N, et al.

Magnetic resonance fingerprinting

[J]. Nature, 2013, 495: 187-192.

DOI:10.1038/nature11971      [本文引用: 9]

BIPIN MB, COPPO S, FRANCES M D, et al.

Magnetic resonance fingerprinting: a technical review

[J]. Magn Reson Med, 2019, 81: 25-46.

DOI:10.1002/mrm.27403      PMID:30277265      [本文引用: 2]

Multiparametric quantitative imaging is gaining increasing interest due to its widespread advantages in clinical applications. Magnetic resonance fingerprinting is a recently introduced approach of fast multiparametric quantitative imaging. In this article, magnetic resonance fingerprinting acquisition, dictionary generation, reconstruction, and validation are reviewed.© International Society for Magnetic Resonance in Medicine.

MCGIVNEY D F, BOYACIOGLU R, JIANG Y, et al.

Magnetic resonance fingerprinting review part 2: technique and directions

[J]. J Magn Reson Imaging, 2020, 51(4): 993-1007.

DOI:10.1002/jmri.26877      PMID:31347226      [本文引用: 3]

Magnetic resonance fingerprinting (MRF) is a general framework to quantify multiple MR-sensitive tissue properties with a single acquisition. There have been numerous advances in MRF in the years since its inception. In this work we highlight some of the recent technical developments in MRF, focusing on sequence optimization, modifications for reconstruction and pattern matching, new methods for partial volume analysis, and applications of machine and deep learning. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:993-1007.© 2019 International Society for Magnetic Resonance in Medicine.

LI M, DONG Z C, ZHANG X W.

Magnetic resonance fingerprinting imaging technology and its progress

[J]. Scientia Sinica Vitae, 2019, 49(1): 28-40.

DOI:10.1360/N052018-00070      URL     [本文引用: 1]

李敏, 董正超, 张学武, .

磁共振指纹成像技术及其最新进展

[J]. 中国科学: 生命科学, 2019, 49(1): 28-40.

DOI:10.1360/N052018-00070      URL     [本文引用: 1]

DENG W, LI X H.

Research progress of cardiac magnetic resonance fingerprint technology

[J]. Int J Med Radiol, 2022, 45(2): 189-191+204.

[本文引用: 1]

邓炜, 李小虎.

心脏磁共振指纹技术研究进展

[J]. 国际医学放射学杂志, 2022, 45(2): 189-191+204.

[本文引用: 1]

JIANG Y, MA D, GRISWOLD M, et al.

mr fingerprinting using fast imaging with steady state precession (FISP) with spiral readout

[J]. Magn Reson Med, 2015, 74(6): 1621-1631.

DOI:10.1002/mrm.25559      PMID:25491018      [本文引用: 2]

This study explores the possibility of using gradient echo-based sequences other than balanced steady-state free precession (bSSFP) in the magnetic resonance fingerprinting (MRF) framework to quantify the relaxation parameters.An MRF method based on a fast imaging with steady-state precession (FISP) sequence structure is presented. A dictionary containing possible signal evolutions with physiological range of T1 and T2 was created using the extended phase graph formalism according to the acquisition parameters. The proposed method was evaluated in a phantom and a human brain. T1, T2, and proton density were quantified directly from the undersampled data by the pattern recognition algorithm.T1 and T2 values from the phantom demonstrate that the results of MRF FISP are in good agreement with the traditional gold-standard methods. T1 and T2 values in brain are within the range of previously reported values.MRF-FISP enables a fast and accurate quantification of the relaxation parameters. It is immune to the banding artifact of bSSFP due to B0 inhomogeneities, which could improve the ability to use MRF for applications beyond brain imaging.© 2014 Wiley Periodicals, Inc.

BUONINCONTRI G, SAWIAK S J.

MR fingerprinting with simultaneous B1 estimation

[J]. Magn Reson Med, 2016, 76(4): 1127-1135.

DOI:10.1002/mrm.26009      PMID:26509746      [本文引用: 2]

MR fingerprinting (MRF) can be used for quantitative estimation of physical parameters in MRI. Here, we extend the method to incorporate B1 estimation.The acquisition is based on steady state free precession MR fingerprinting with a Cartesian trajectory. To increase the sensitivity to the B1 profile, abrupt changes in flip angle were introduced in the sequence. Slice profile and B1 effects were included in the dictionary and the results from two- and three-dimensional (3D) acquisitions were compared. Acceleration was demonstrated using retrospective undersampling in the phase encode directions of 3D data exploiting redundancy between MRF frames at the edges of k-space.Without B1 estimation, T2 and B1 were inaccurate by more than 20%. Abrupt changes in flip angle improved B1 maps. T1 and T2 values obtained with the new MRF methods agree with classical spin echo measurements and are independent of the B1 field profile. When using view sharing reconstruction, results remained accurate (error <10%) when sampling under 10% of k-space from the 3D data.The methods demonstrated here can successfully measure T1, T2, and B1. Errors due to slice profile can be substantially reduced by including its effect in the dictionary or acquiring data in 3D. Magn Reson Med 76:1127-1135, 2016. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.© 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

RIEGER B, ZIMMER F, ZAPP J, et al.

Magnetic resonance fingerprinting using echo-planar imaging: joint quantification of T1 and T2* relaxation times

[J]. Magn Reson Med, 2017, 78(5): 1724-1733.

DOI:10.1002/mrm.26561      URL     [本文引用: 2]

KARA D, FAN M, HAMILTON J, et al.

Parameter map error due to normal noise and aliasing artifacts in MR fingerprinting

[J]. Magn Reson Med, 2019, 81: 3108-3123.

DOI:10.1002/mrm.27638      PMID:30671999      [本文引用: 1]

To introduce a quantitative tool that enables rapid forecasting of T and T parameter map errors due to normal and aliasing noise as a function of the MR fingerprinting (MRF) sequence, which can be used in sequence optimization.The variances of normal noise and aliasing artifacts in the collected signal are related to the variances in T and T maps through derived quality factors. This analytical result is tested against the results of a Monte-Carlo approach for analyzing MRF sequence encoding capability in the presence of aliasing noise, and verified with phantom experiments at 3 T. To further show the utility of our approach, our quality factors are used to find efficient MRF sequences for fewer repetitions.Experimental results verify the ability of our quality factors to rapidly assess the efficiency of an MRF sequence in the presence of both normal and aliasing noise. Quality factor assessment of MRF sequences is in agreement with the results of a Monte-Carlo approach. Analysis of MRF parameter map errors from phantom experiments is consistent with the derived quality factors, with T (T ) data yielding goodness of fit R ≥ 0.92 (0.80). In phantom and in vivo experiments, the efficient pulse sequence, determined through quality factor maximization, led to comparable or improved accuracy and precision relative to a longer sequence, demonstrating quality factor utility in MRF sequence design.The here introduced quality factor framework allows for rapid analysis and optimization of MRF sequence design through T and T error forecasting.© 2019 International Society for Magnetic Resonance in Medicine.

SOMMER K, AMTHOR T, DONEVA M, et al.

Towards predicting the encoding capability of MR fingerprinting sequences

[J]. Magn Reson Imaging, 2017, 41: 7-14.

DOI:S0730-725X(17)30118-2      PMID:28684268      [本文引用: 2]

Sequence optimization and appropriate sequence selection is still an unmet need in magnetic resonance fingerprinting (MRF). The main challenge in MRF sequence design is the lack of an appropriate measure of the sequence's encoding capability. To find such a measure, three different candidates for judging the encoding capability have been investigated: local and global dot-product-based measures judging dictionary entry similarity as well as a Monte Carlo method that evaluates the noise propagation properties of an MRF sequence. Consistency of these measures for different sequence lengths as well as the capability to predict actual sequence performance in both phantom and in vivo measurements was analyzed. While the dot-product-based measures yielded inconsistent results for different sequence lengths, the Monte Carlo method was in a good agreement with phantom experiments. In particular, the Monte Carlo method could accurately predict the performance of different flip angle patterns in actual measurements. The proposed Monte Carlo method provides an appropriate measure of MRF sequence encoding capability and may be used for sequence optimization.Copyright © 2017 Elsevier Inc. All rights reserved.

ZHAO B, HALDAR J P, CONGYU L, et al.

Optimal experiment design for magnetic resonance fingerprinting: Cramer-Rao bound meets spin dynamics

[J]. IEEE Trans Med Imaging, 2019, 38: 844-861.

DOI:10.1109/TMI.2018.2873704      URL     [本文引用: 2]

HEESTERBEEK D G J, KOOLSTRA K, OSCH M J P, et al.

Sequence optimization mitigating undersampling errors in magnetic resonance fingerprinting

[C]// Joint Annual Meeting ISMRM-ESMRMB ISMRT 31st Annual Meeting, London, UK, 2022, 0561.

[本文引用: 2]

JORDAN S P, HU S Y, ROZADA I, et al.

Automated design of pulse sequences for magnetic resonance fingerprinting using physics-inspired optimization

[J]// Proc Natl Acad Sci U S A, 2021, 118(40): e2020516118.

[本文引用: 1]

SUBASHI E, YU V, COHEN O, et al.

Motion-robust free-breathing abdominal MR fingerprinting (MRF) using radial acquisition and temporal compressed sensing reconstruction: initial results

[J]. Medical Physics, 2021, 48(6): 25-29.

[本文引用: 3]

YANG M, JIANG Y, MA D, et al.

Game of learning bloch equation simulations for mr fingerprinting

[OL]. ArXiv, 2020, https://arxiv.org/abs/2004.02270.

URL     [本文引用: 1]

VELASCO C, FLETCHER T J, BOTNAR R M, et al.

Artificial intelligence in cardiac magnetic resonance fingerprinting

[J]. Front Cardiovasc Med, 2022, 9: 1009131.

DOI:10.3389/fcvm.2022.1009131      URL     [本文引用: 1]

Magnetic resonance fingerprinting (MRF) is a fast MRI-based technique that allows for multiparametric quantitative characterization of the tissues of interest in a single acquisition. In particular, it has gained attention in the field of cardiac imaging due to its ability to provide simultaneous and co-registered myocardial T1 and T2 mapping in a single breath-held cardiac MRF scan, in addition to other parameters. Initial results in small healthy subject groups and clinical studies have demonstrated the feasibility and potential of MRF imaging. Ongoing research is being conducted to improve the accuracy, efficiency, and robustness of cardiac MRF. However, these improvements usually increase the complexity of image reconstruction and dictionary generation and introduce the need for sequence optimization. Each of these steps increase the computational demand and processing time of MRF. The latest advances in artificial intelligence (AI), including progress in deep learning and the development of neural networks for MRI, now present an opportunity to efficiently address these issues. Artificial intelligence can be used to optimize candidate sequences and reduce the memory demand and computational time required for reconstruction and post-processing. Recently, proposed machine learning-based approaches have been shown to reduce dictionary generation and reconstruction times by several orders of magnitude. Such applications of AI should help to remove these bottlenecks and speed up cardiac MRF, improving its practical utility and allowing for its potential inclusion in clinical routine. This review aims to summarize the latest developments in artificial intelligence applied to cardiac MRF. Particularly, we focus on the application of machine learning at different steps of the MRF process, such as sequence optimization, dictionary generation and image reconstruction.

SAYBASILI H, GRISWOLD M A, MA D, et al.

SVD compression for magnetic resonance fingerprinting in the time domain

[J]. IEEE Trans Med Imaging, 2014, 33(12): 2311-2322.

DOI:10.1109/TMI.2014.2337321      URL     [本文引用: 1]

MA D, MCGIVNEY D, GRISWOLD M A, et al.

Low rank approximation methods for MR fingerprinting with large scale dictionaries

[J]. Magn Reson Med, 2018, 79(4): 2392-2400.

DOI:10.1002/mrm.26867      PMID:28804918      [本文引用: 1]

This work proposes new low rank approximation approaches with significant memory savings for large scale MR fingerprinting (MRF) problems.We introduce a compressed MRF with randomized singular value decomposition method to significantly reduce the memory requirement for calculating a low rank approximation of large sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF dictionaries in the randomized singular value decomposition space and fitting them to low-degree polynomials to generate high resolution MRF parameter maps. In vivo 1.5T and 3T brain scan data are used to validate the approaches.T, T, and off-resonance maps are in good agreement with that of the standard MRF approach. Moreover, the memory savings is up to 1000 times for the MRF-fast imaging with steady-state precession sequence and more than 15 times for the MRF-balanced, steady-state free precession sequence.The proposed compressed MRF with randomized singular value decomposition and dictionary fitting methods are memory efficient low rank approximation methods, which can benefit the usage of MRF in clinical settings. They also have great potentials in large scale MRF problems, such as problems considering multi-component MRF parameters or high resolution in the parameter space. Magn Reson Med 79:2392-2400, 2018. © 2017 International Society for Magnetic Resonance in Medicine.© 2017 International Society for Magnetic Resonance in Medicine.

MA D, WALD L L, GRISWOLD M A, et al.

Fast group matching for MR fingerprinting reconstruction

[J]. Magn Reson Med, 2015, 74(2): 523-528.

DOI:10.1002/mrm.25439      PMID:25168690      [本文引用: 1]

MR fingerprinting (MRF) is a technique for quantitative tissue mapping using pseudorandom measurements. To estimate tissue properties such as T1, T2, proton density, and B0, the rapidly acquired data are compared against a large dictionary of Bloch simulations. This matching process can be a very computationally demanding portion of MRF reconstruction.We introduce a fast group matching algorithm (GRM) that exploits inherent correlation within MRF dictionaries to create highly clustered groupings of the elements. During matching, a group specific signature is first used to remove poor matching possibilities. Group principal component analysis (PCA) is used to evaluate all remaining tissue types. In vivo 3 Tesla brain data were used to validate the accuracy of our approach.For a trueFISP sequence with over 196,000 dictionary elements, 1000 MRF samples, and image matrix of 128 × 128, GRM was able to map MR parameters within 2s using standard vendor computational resources. This is an order of magnitude faster than global PCA and nearly two orders of magnitude faster than direct matching, with comparable accuracy (1-2% relative error).The proposed GRM method is a highly efficient model reduction technique for MRF matching and should enable clinically relevant reconstruction accuracy and time on standard vendor computational resources.© 2014 Wiley Periodicals, Inc.

CHRISTOPHER C C, XIAO C, BORIS M, et al.

AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting

[J], Magn Reson Imaging, 2017, 41: 29-40.

DOI:S0730-725X(17)30125-X      PMID:28716682      [本文引用: 1]

Existing approaches for reconstruction of multiparametric maps with magnetic resonance fingerprinting (MRF) are currently limited by their estimation accuracy and reconstruction time. We aimed to address these issues with a novel combination of iterative reconstruction, fingerprint compression, additional regularization, and accelerated dictionary search methods. The pipeline described here, accelerated iterative reconstruction for magnetic resonance fingerprinting (AIR-MRF), was evaluated with simulations as well as phantom and in vivo scans. We found that the AIR-MRF pipeline provided reduced parameter estimation errors compared to non-iterative and other iterative methods, particularly at shorter sequence lengths. Accelerated dictionary search methods incorporated into the iterative pipeline reduced the reconstruction time at little cost of quality.Copyright © 2017 Elsevier Inc. All rights reserved.

WANG Z, ZHANG J, CUI D, et al.

Magnetic resonance fingerprinting using a fast dictionary searching algorithm: MRF-ZOOM

[J]. IEEE Trans Biomed Eng, 2019, 66(6): 1526-1535.

DOI:10.1109/TBME.2018.2874992      PMID:30307852      [本文引用: 1]

Magnetic resonance fingerprinting (MRF) is a new technique for simultaneously quantifying multiple MR parameters using one temporally resolved MR scan. In MRF, MR signal is manipulated to have distinct temporal behavior with regard to different combinations of the underlying MR parameters and across spatial regions. The temporal behavior of acquired MR signal is then used as a key to find its unique counterpart in a MR signal dictionary. The dictionary generation and searching (DGS) process represents the most important part of MRF, which however can be intractable because of the disk space requirement and the computational demand exponentially increases with the number of MR parameters, spatial coverage, and spatial resolution. The goal of this paper was to develop a fast and space efficient MRF DGS algorithm.The optimal DGS algorithm: MRF ZOOM was designed based on the properties of the parameter matching objective function characterized with full dictionary simulations. Both synthetic data and in-vivo data were used to validate the method.MRF ZOOM can dramatically save MRF DGS time without sacrificing matching accuracy.MRF ZOOM can facilitate a wide range of MRF applications.

CRUZ G, QI H, JAUBERT O, et al.

Generalized low-rank non-rigid motion-corrected reconstruction for MR fingerprinting

[J]. Magn Reson Med, 2022, 87: 746-763.

DOI:10.1002/mrm.v87.2      URL     [本文引用: 1]

CHEN Y, FANG Z, HUNG S C, et al.

High-resolution 3D MR Fingerprinting using parallel imaging and deep learning

[J]. Neuroimage, 2020, 206: 116329.

DOI:10.1016/j.neuroimage.2019.116329      URL     [本文引用: 1]

HOPPE E, KÖRZDÖRFER G, WÜRFL T, et al.

Deep learning for magnetic resonance fingerprinting: A new approach for predicting quantitative parameter values from time series

[J]. Stud Health Technol Inform, 2017, 243: 202-206.

PMID:28883201      [本文引用: 1]

The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.

PENG C, DI C, VINCE V, et al.

Development of fast deep learning quantification for magnetic resonance fingerprinting in vivo

[J]. Magn Reson Imaging, 2020, 70: 81-90.

DOI:S0730-725X(19)30731-3      PMID:32276007      [本文引用: 1]

A deep neural network was developed for magnetic resonance fingerprinting (MRF) quantification. This study aimed at extending previous studies of deep learning MRF to in vivo applications, allowing sub-second computation time for large-scale data.We applied the deep learning methodology based on our previously published multi-layer perceptron. The number of layers was four, which was optimized to balance the model capacity and noise robustness. The training sets were obtained from MRF dictionaries with 9000 to 28,000 atoms, depending on the desired T1 and T2 ranges. The simulated MRF undersampling artifact based on the k-space acquisition scheme and noise were both added to the training data to reduce the error in estimates.The neural network achieved high fidelity (R2 _ 0.98) as compared to the T1 and T2 values of the ISMRM standardized phantom. In brain MRF experiment, the model trained with simulated artifacts and noise showed less error compared to that without. The in vivo application of our neural network for liver and prostate were also demonstrated. For an MRF slice with 256 _ 256 image resolution, the computation time of our neural network was 0.12 s, compared with the _ 28 s-pre-slice for the conventional dictionary matching method.Our neural network achieved fast computation speed for MRF quantification. The model trained with simulated artifacts and noise showed less error and achieved optimal performance for phantom experiment and in vivo normal brain and liver, and prostate cancer patient.Copyright © 2020 Elsevier Inc. All rights reserved.

HAMILTON J I, CURREY D, RAJAGOPALAN S, et al.

Deep learning reconstruction for cardiac magnetic resonance fingerprinting T1 and T2 mapping

[J]. Magn Reson Med, 2021, 85: 2127-2135.

DOI:10.1002/mrm.v85.4      URL     [本文引用: 1]

COHEN O, ZHU B, ROSEN M S.

MR fingerprinting deep reconstruction network (DRONE)

[J]. Magn Reson Med, 2018, 80: 885-894.

DOI:10.1002/mrm.27198      PMID:29624736      [本文引用: 2]

HOPPE E, KÖRZDÖRFER G, NITTKA M, et al.

Deep learning for magnetic resonance fingerprinting: Accelerating the reconstruction of quantitative relaxation maps

[C]// Proceedings of the 26th Annual Meeting of ISMRM, Paris, France, 2018: 1-5.

[本文引用: 3]

SONG P, ELDAR Y C, MAZOR G, et al.

HYDRA. Hybrid deep magnetic resonance fingerprinting

[J]. Med Phys. 2019, 46: 4951-4969.

DOI:10.1002/mp.v46.11      URL     [本文引用: 1]

BALSIGER F, JUNGO A, SCHEIDEGGER O, et al.

Spatially regularized parametric map reconstruction for fast magnetic resonance fingerprinting

[J]. Med Image Anal, 2020, 64: 101741.

DOI:10.1016/j.media.2020.101741      URL     [本文引用: 1]

VIRTUE P, YU S X, LUSTIG M.

Better than real: complex-valued neural nets for MRI fingerprinting

[C]// IEEE International Conference on Image Processing (ICIP), 2017: 00070.

[本文引用: 1]

HOPPE E, THAMM F, KÖRZDÖRFER G, et al.

RinQ fingerprinting: recurrence-informed quantile networks for magnetic resonance fingerprinting

[C]// Medical Image Computing and Computer Assisted Intervention-MICCAI 2019: 22nd International Conference, Shenzhen, China, 2019: 92-100.

[本文引用: 3]

XU Y L, HOPPE E, SPEIER P, et al.

Learning how to clean fingerprints -- deep learning based separated artefact reduction and regression for mr fingerprinting

[C]// 2020 ISMRM & SMRT Virtual Conference & Exhibition, Paris, France, 2020.

[本文引用: 1]

FANG Z, CHEN Y, LIU M, et al.

Deep learning for fast and spatially constrained tissue quantification from highly accelerated data in magnetic resonance fingerprinting

[J]. IEEE Trans Med Imaging, 2019, 38(10): 2364-2374.

DOI:10.1109/TMI.42      URL     [本文引用: 1]

HSIEH J J L, SVALBE I.

Magnetic resonance fingerprinting: from evolution to clinical applications

[J]. J Med Radiat Sci, 2020, 67(4): 333-344.

DOI:10.1002/jmrs.v67.4      URL     [本文引用: 1]

BADVE C, YU A, DASTMALCHIAN S, et al.

MR fingerprinting of adult brain tumors: Initial experience

[J]. AJNR Am J Neuroradiol, 2017, 38 (3): 492-499.

DOI:10.3174/ajnr.A5035      URL     [本文引用: 4]

MA D, JONES S E, DESHMANE A, et al.

Development of high-resolution 3D MR fingerprinting for detection and characterization of epileptic lesions

[J]. J Magn Reson Imaging, 2019, 49(5): 1333-1346.

DOI:10.1002/jmri.26319      PMID:30582254      [本文引用: 4]

Conventional MRI can be limited in detecting subtle epileptic lesions or identifying active/epileptic lesions among widespread, multifocal lesions.We developed a high-resolution 3D MR fingerprinting (MRF) protocol to simultaneously provide quantitative T, T, proton density, and tissue fraction maps for detection and characterization of epileptic lesions.Prospective.National Institute of Standards and Technology (NIST) / International Society for Magnetic Resonance in Medicine (ISMRM) phantom, five healthy volunteers and 15 patients with medically intractable epilepsy undergoing presurgical evaluation with noninvasive or invasive electroclinical data.3D MRF scans and routine clinical epilepsy MR protocols were acquired at 3 T.The accuracy of the T and T values were first evaluated using the NIST/ISMRM phantom. The repeatability was then estimated with both phantom and volunteers based on the coefficient of variance (CV). For epilepsy patients, all the maps were qualitatively reviewed for lesion detection by three independent reviewers (S.E.J., M.L., I.N.) blinded to clinical data. Region of interest (ROI) analysis was performed on T and T maps to quantify the multiparametric signal differences between lesion and normal tissues. Findings from qualitative review and quantitative ROI analysis were compared with patients' electroclinical data to assess concordance.Phantom results were compared using R-squared, and patient results were compared using linear regression models.The phantom study showed high accuracy with the standard values, with an R of 0.99. The volunteer study showed high repeatability, with an average CV of 4.3% for T and T in various tissue regions. For the 15 patients, MRF showed additional findings in four patients, with the remaining 11 patients showing findings consistent with conventional MRI. The additional MRF findings were highly concordant with patients' electroclinical presentation.The 3D MRF protocol showed potential to identify otherwise inconspicuous epileptogenic lesions from the patients with negative conventional MRI diagnosis, as well as to correlate with different levels of epileptogenicity when widespread lesions were present.3. Technical Efficacy Stage: 3. J. Magn. Reson. Imaging 2019;49:1333-1346.© 2018 International Society for Magnetic Resonance in Medicine.

CHEN Y, JIANG Y, PAHWA S, et al.

MR fingerprinting for rapid quantitative abdominal imaging

[J]. Radiology, 2016, 279(1): 278-286.

DOI:10.1148/radiol.2016152037      PMID:26794935      [本文引用: 4]

To develop a magnetic resonance (MR) "fingerprinting" technique for quantitative abdominal imaging.This HIPAA-compliant study had institutional review board approval, and informed consent was obtained from all subjects. To achieve accurate quantification in the presence of marked B0 and B1 field inhomogeneities, the MR fingerprinting framework was extended by using a two-dimensional fast imaging with steady-state free precession, or FISP, acquisition and a Bloch-Siegert B1 mapping method. The accuracy of the proposed technique was validated by using agarose phantoms. Quantitative measurements were performed in eight asymptomatic subjects and in six patients with 20 focal liver lesions. A two-tailed Student t test was used to compare the T1 and T2 results in metastatic adenocarcinoma with those in surrounding liver parenchyma and healthy subjects.Phantom experiments showed good agreement with standard methods in T1 and T2 after B1 correction. In vivo studies demonstrated that quantitative T1, T2, and B1 maps can be acquired within a breath hold of approximately 19 seconds. T1 and T2 measurements were compatible with those in the literature. Representative values included the following: liver, 745 msec ± 65 (standard deviation) and 31 msec ± 6; renal medulla, 1702 msec ± 205 and 60 msec ± 21; renal cortex, 1314 msec ± 77 and 47 msec ± 10; spleen, 1232 msec ± 92 and 60 msec ± 19; skeletal muscle, 1100 msec ± 59 and 44 msec ± 9; and fat, 253 msec ± 42 and 77 msec ± 16, respectively. T1 and T2 in metastatic adenocarcinoma were 1673 msec ± 331 and 43 msec ± 13, respectively, significantly different from surrounding liver parenchyma relaxation times of 840 msec ± 113 and 28 msec ± 3 (P <.0001 and P <.01) and those in hepatic parenchyma in healthy volunteers (745 msec ± 65 and 31 msec ± 6, P <.0001 and P =.021, respectively).A rapid technique for quantitative abdominal imaging was developed that allows simultaneous quantification of multiple tissue properties within one 19-second breath hold, with measurements comparable to those in published literature.

CHEN Y, PANDA A, PAHWA S, et al.

Three-dimensional MR fingerprinting for quantitative breast imaging

[J]. Radiology, 2019, 290(1): 33-40.

DOI:10.1148/radiol.2018180836      PMID:30375925      [本文引用: 4]

Purpose To develop a fast three-dimensional method for simultaneous T1 and T2 quantification for breast imaging by using MR fingerprinting. Materials and Methods In this prospective study, variable flip angles and magnetization preparation modules were applied to acquire MR fingerprinting data for each partition of a three-dimensional data set. A fast postprocessing method was implemented by using singular value decomposition. The proposed technique was first validated in phantoms and then applied to 15 healthy female participants (mean age, 24.2 years ± 5.1 [standard deviation]; range, 18-35 years) and 14 female participants with breast cancer (mean age, 55.4 years ± 8.8; range, 39-66 years) between March 2016 and April 2018. The sensitivity of the method to B field inhomogeneity was also evaluated by using the Bloch-Siegert method. Results Phantom results showed that accurate and volumetric T1 and T2 quantification was achieved by using the proposed technique. The acquisition time for three-dimensional quantitative maps with a spatial resolution of 1.6 × 1.6 × 3 mm was approximately 6 minutes. For healthy participants, averaged T1 and T2 relaxation times for fibroglandular tissues at 3.0 T were 1256 msec ± 171 and 46 msec ± 7, respectively. Compared with normal breast tissues, higher T2 relaxation time (68 msec ± 13) was observed in invasive ductal carcinoma (P <.001), whereas no statistical difference was found in T1 relaxation time (1183 msec ± 256; P =.37). Conclusion A method was developed for breast imaging by using the MR fingerprinting technique, which allows simultaneous and volumetric quantification of T1 and T2 relaxation times for breast tissues. © RSNA, 2018 Online supplemental material is available for this article.

CAO X, LIAO C, LYER S S, et al.

Optimized multi-axis spiral projection MR fingerprinting with subspace reconstruction for rapid whole-brain high-isotropic-resolution quantitative imaging

[J]. Magn Reson Med, 2022, 88(1): 133-150.

DOI:10.1002/mrm.29194      PMID:35199877      [本文引用: 1]

To improve image quality and accelerate the acquisition of 3D MR fingerprinting (MRF).Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low-rank constraint and a modified spiral-projection spatiotemporal encoding scheme called tiny golden-angle shuffling were implemented for rapid whole-brain high-resolution quantitative mapping. Reconstruction parameters such as the locally low-rank regularization parameter and the subspace rank were tuned using retrospective in vivo data and simulated examinations. B inhomogeneity correction using multifrequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect.The proposed MRF acquisition and reconstruction framework yields high-quality 1-mm isotropic whole-brain quantitative maps in 2 min at better quality compared with 6-min acquisitions of prior approaches. The proposed method was validated to not induce bias in T and T mapping. High-quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 min using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures.The proposed tiny golden-angle shuffling, MRF with optimized spiral-projection trajectory and subspace reconstruction enables high-resolution quantitative mapping in ultrafast acquisition time.© 2022 International Society for Magnetic Resonance in Medicine.

LIAO C, WANG K, CAO X, et al.

Detection of lesions in mesial temporal lobe epilepsy by using MR fingerprinting

[J]. Radiology, 2018, 288: 804-812.

DOI:10.1148/radiol.2018172131      PMID:29916782      [本文引用: 1]

Purpose To improve diagnosis of hippocampal sclerosis (HS) in patients with mesial temporal lobe epilepsy (MTLE) by using MR fingerprinting and compare with visual assessment of T1- and T2-weighted MR images. Materials and Methods For this prospective study performed between April and November 2016, T1 and T2 maps were obtained and tissue segmentation performed in consecutive patients with drug-resistant MTLE with unilateral or bilateral HS. T1 and T2 maps were compared between 33 patients with MTLE (23 women and 10 men; mean age, 32.6 years; age range, 16-60 years) and 30 healthy participants (20 women and 10 men; mean age, 28.8 years; age range, 18-40 years). Differences in individual bilateral hippocampi were compared by using a Wilcoxon signed rank test, whereas the Wilcoxon rank-sum test was used for difference analysis between healthy control participants and patients with MTLE. Results The diagnosis rate (ie, ratio of HS diagnosed on the basis of a 2.5-minute MR fingerprinting examination compared with standard methods: MRI, electroencephalography, and PET) was 32 of 33 (96.9%; 95% confidence interval: 84.9%, 100%), reflecting improved accuracy of diagnosis (P = 1.92 × 10) over routine MR examinations that had a diagnostic rate of 23 of 33 (69.7%; 95% confidence interval: 51.5%, 81.6%). The comparison between atrophic and normal-appearing hippocampus in 33 patients with MTLE and healthy control participants demonstrated that both T1 and T2 values in HS lesions were higher than those of normal hippocampal tissue of healthy participants (T1: 1361 msec ± 85 vs 1249 msec ± 59, respectively; T2: 135 msec ± 15 vs 104 msec ± 9, respectively; P <.0001). Conclusion MR fingerprinting allowed for multiparametric mapping of temporal lobe within 2.5 minutes and helped to identify lesions suspicious for HS in patients with MTLE with improved accuracy.© RSNA, 2018 Online supplemental material is available for this article.

RIEL M V, YU Z, HODONO S, et al.

Free-breathing abdominal T1 mapping using an optimized MR fingerprinting sequence

[J]. NMR Biomed, 2021, 34(7): e4531.

[本文引用: 1]

JAUBERT O, ARRIETA C, CRUZ G, et al.

Multi-parametric liver tissue characterization using MR fingerprinting: Simultaneous T1, T2, T2*, and fat fraction mapping

[J]. Magn Reson Med, 2020, 84(5): 2625-2635.

DOI:10.1002/mrm.v84.5      URL     [本文引用: 1]

SERRAO E M, KESSLER D A, CARMO B, et al.

Magnetic resonance fingerprinting of the pancreas at 1.5 T and 3.0 T

[J]. Sci Rep, 2020, 10: 17563.

DOI:10.1038/s41598-020-74462-6      [本文引用: 1]

Magnetic resonance imaging of the pancreas is increasingly used as an important diagnostic modality for characterisation of pancreatic lesions. Pancreatic MRI protocols are mostly qualitative due to time constraints and motion sensitivity. MR Fingerprinting is an innovative acquisition technique that provides qualitative data and quantitative parameter maps from a single free‐breathing acquisition with the potential to reduce exam times. This work investigates the feasibility of MRF parameter mapping for pancreatic imaging in the presence of free-breathing exam. Sixteen healthy participants were prospectively imaged using MRF framework. Regions-of-interest were drawn in multiple solid organs including the pancreas and T1 and T2 values determined. MRF T1 and T2 mapping was performed successfully in all participants (acquisition time:2.4–3.6 min). Mean pancreatic T1 values were 37–43% lower than those of the muscle, spleen, and kidney at both 1.5 and 3.0 T. For these organs, the mean pancreatic T2 values were nearly 40% at 1.5 T and &lt; 12% at 3.0 T. The feasibility of MRF at 1.5 T and 3 T was demonstrated in the pancreas. By enabling fast and free-breathing quantitation, MRF has the potential to add value during the clinical characterisation and grading of pathological conditions, such as pancreatitis or cancer.

NOLTE T, SCHOLTEN H, GROSS N, et al.

Confounding factors in breast magnetic resonance fingerprinting: B1+, slice profile, and diffusion effects

[J]. Magn Reson Med, 2021, 85(4): 1865-1880.

DOI:10.1002/mrm.v85.4      URL     [本文引用: 1]

ECK B L, FLAMM S D, KWON D H, et al.

Cardiac magnetic resonance fingerprinting: trends in technical development and potential clinical applications

[J]. Prog Nucl Magn Reson Spectrosc, 2021, 122: 11-22.

DOI:10.1016/j.pnmrs.2020.10.001      URL     [本文引用: 1]

LIU Y, HAMILTON J, RAJAGOPALAN S, et al.

Cardiac magnetic resonance fingerprinting: technical overview and initial results

[J]. JACC Cardiovasc Imaging, 2018, 11: 1837-1853.

DOI:S1936-878X(18)30833-7      PMID:30522686      [本文引用: 1]

Cardiovascular magnetic resonance is a versatile tool that enables noninvasive characterization of cardiac tissue structure and function. Parametric mapping techniques have allowed unparalleled differentiation of pathophysiological differences in the myocardium such as the delineation of myocardial fibrosis, hemorrhage, and edema. These methods are increasingly used as part of a tool kit to characterize disease states such as cardiomyopathies and coronary artery disease more accurately. Currently conventional mapping techniques require separate acquisitions for T and T mapping, the values of which may depend on specifics of the magnetic resonance imaging system hardware, pulse sequence implementation, and physiological variables including blood pressure and heart rate. The cardiac magnetic resonance fingerprinting (cMRF) technique has recently been introduced for simultaneous and reproducible measurement of T and T maps in a single scan. The potential for this technique to provide consistent tissue property values independent of variables including scanner, pulse sequence, and physiology could allow an unbiased framework for the assessment of intrinsic properties of cardiac tissue including structure, perfusion, and parameters such as extracellular volume without the administration of exogenous contrast agents. This review seeks to introduce the basics of the cMRF technique, including pulse sequence design, dictionary generation, and pattern matching. The potential applications of cMRF in assessing diseases such as nonischemic cardiomyopathy are also briefly discussed, and ongoing areas of research are described.Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

HAMILTON J I, JIANG Y, CHEN Y, et al.

MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density

[J]. Magn Reson Med, 2017, 77: 1446-1458.

DOI:10.1002/mrm.v77.4      URL     [本文引用: 1]

HAMILTON J I, JIANG Y, MA D, et al.

Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction

[J]. NMR Biomed, 2019, 32: e4041.

[本文引用: 1]

HAMILTON J I, PAHWA S, ADEDIGBA J, et al.

Simultaneous mapping of T1 and T2 using cardiac magnetic resonance fingerprinting in a cohort of healthy subjects at 1.5T

[J]. J Magn Reson Imaging, 2020, 52: 1044-1052.

DOI:10.1002/jmri.v52.4      URL     [本文引用: 1]

VELASCO C, FLETCHER T J, BOTNAR R M, et al.

Artificial intelligence in cardiac magnetic resonance fingerprinting

[J]. Front Cardiovasc Med, 2022, 9: 1009131

DOI:10.3389/fcvm.2022.1009131      URL     [本文引用: 2]

Magnetic resonance fingerprinting (MRF) is a fast MRI-based technique that allows for multiparametric quantitative characterization of the tissues of interest in a single acquisition. In particular, it has gained attention in the field of cardiac imaging due to its ability to provide simultaneous and co-registered myocardial T1 and T2 mapping in a single breath-held cardiac MRF scan, in addition to other parameters. Initial results in small healthy subject groups and clinical studies have demonstrated the feasibility and potential of MRF imaging. Ongoing research is being conducted to improve the accuracy, efficiency, and robustness of cardiac MRF. However, these improvements usually increase the complexity of image reconstruction and dictionary generation and introduce the need for sequence optimization. Each of these steps increase the computational demand and processing time of MRF. The latest advances in artificial intelligence (AI), including progress in deep learning and the development of neural networks for MRI, now present an opportunity to efficiently address these issues. Artificial intelligence can be used to optimize candidate sequences and reduce the memory demand and computational time required for reconstruction and post-processing. Recently, proposed machine learning-based approaches have been shown to reduce dictionary generation and reconstruction times by several orders of magnitude. Such applications of AI should help to remove these bottlenecks and speed up cardiac MRF, improving its practical utility and allowing for its potential inclusion in clinical routine. This review aims to summarize the latest developments in artificial intelligence applied to cardiac MRF. Particularly, we focus on the application of machine learning at different steps of the MRF process, such as sequence optimization, dictionary generation and image reconstruction.

JAUBERT O, CRUZ G, BUSTIN A, et al.

Free-running cardiac magnetic resonance fingerprinting: joint T1/T2 map and cine imaging

[J]. Magn Reson Imaging, 2020, 68: 173-182.

DOI:10.1016/j.mri.2020.02.005      URL     [本文引用: 1]

CRUZ G, JAUBERT O, QI H, et al.

3D free-breathing cardiac magnetic resonance fingerprinting

[J]. NMR Biomed, 2020, 33: e4370.

[本文引用: 1]

BARKHOF F, PARKER G J M.

Reproducing Fingerprints: a step toward clinical adoption

[J]. Radiology, 2019, 292: 438-439.

DOI:10.1148/radiol.2019191146      PMID:31211635      [本文引用: 1]

KEENAN K E, JIANG Y, MA D, et al.

Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom

[J]. Magn Reson Med, 2017, 78(4): 1452-1457.

DOI:10.1002/mrm.26509      URL     [本文引用: 1]

KÖRZDÖRFER G, KIRSCH R, LIU K, et al.

Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain

[J]. Radiology, 2019, 292: 429-437.

DOI:10.1148/radiol.2019182360      PMID:31210615      [本文引用: 1]

Background Only sparse literature investigates the reproducibility and repeatability of relaxometry methods in MRI. However, statistical data on reproducibility and repeatability of any quantitative method is essential for clinical application. Purpose To evaluate the reproducibility and repeatability of two-dimensional fast imaging with steady-state free precession MR fingerprinting in vivo in human brains. Materials and Methods Two-dimensional section-selective MR fingerprinting based on a steady-state free precession sequence with an external radiofrequency transmit field, or, correction was used to generate T1 and T2 maps. This prospective study was conducted between July 2017 and January 2018 with 10 scanners from a single manufacturer, including different models, at four different sites. T1 and T2 relaxation times and their variation across scanners (reproducibility) as well as across repetitions on a scanner (repeatability) were analyzed. The relative deviations of T1 and T2 to the average (95% confidence interval) were calculated for several brain compartments. Results Ten healthy volunteers (mean age ± standard deviation, 28.5 years ± 6.9; eight men, two women) participated in this study. Reproducibility and repeatability of T1 and T2 measures in the human brain varied across brain compartments (1.8%-20.9%) and were higher in solid tissues than in the cerebrospinal fluid. T1 measures in solid tissue brain compartments were more stable compared with T2 measures. The half-widths of the confidence intervals for relative deviations were 3.4% for mean T1 and 8.0% for mean T2 values across scanners. Intrascanner repeatability half-widths of the confidence intervals for relative deviations were in the range of 2.0%-3.1% for T1 and 3.1%-7.9% for T2. Conclusion This study provides values on reproducibility and repeatability of T1 and T2 relaxometry measured with fast imaging with steady-state free precession MR fingerprinting in brain tissues of healthy volunteers. Reproducibility and repeatability are considerably higher in solid brain compartments than in cerebrospinal fluid and are higher for T1 than for T2. © RSNA, 2019 See also the editorial by Barkhof and Parker in this issue.

YOKOTA Y, OKADA T, FUSHIMI Y, et al.

Acceleration of 2D-MR fingerprinting by reducing the number of echoes with increased in-plane resolution: a volunteer study

[J]. Magn Reson Mater Phy, 2020, 33: 783-791.

DOI:10.1007/s10334-020-00842-8      [本文引用: 1]

To compare the absolute values and repeatability of magnetic resonance fingerprinting (MRF) with 3000 and 1500 echoes/slice acquired in 41 s and 20 s (MRF3k and MRF1.5k, respectively).

BUONINCONTRI G, BIAGI L, RETICO A, et al.

Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T

[J]. NeuroImage, 2019, 195: 362-372.

DOI:10.1016/j.neuroimage.2019.03.047      URL     [本文引用: 1]

BUONINCONTRI G, KURZAWSKI J W, KAGGIE J D, et al.

Three dimensional MRF obtains highly repeatable and reproducible multi-parametric estimations in the healthy human brain at 1.5 T and 3 T

[J]. NeuroImage, 2021, 226: 117573.

DOI:10.1016/j.neuroimage.2020.117573      URL     [本文引用: 1]

WANG Z Y, WANG Y S, MAO J L, et al.

Magnetic resonance images segmentation of synovium based on Dense-UNet++

[J]. Chinese J Magn Reson, 2022, 39(2): 208-219.

[本文引用: 1]

王振宇, 王颖珊, 毛瑾玲, .

基于Dense-UNet++的关节滑膜磁共振图像分割

[J]. 波谱学杂志, 2022, 39(2): 208-219.

[本文引用: 1]

YANG Q, WANG Z, GUO K, et al.

Physics-driven synthetic data learning for biomedical magnetic resonance

[J]. IEEE Signal Process Mag, 2022, https://doi.org/10.48550/arXiv.2203.11178.

URL     [本文引用: 1]

/