Chinese Journal of Magnetic Resonance ›› 2023, Vol. 40 ›› Issue (2): 111-121.doi: 10.11938/cjmr20223007
• Articles • Previous Articles Next Articles
GUO Jiangfeng1,2,*(),MACMILLAN Bryce2,BALCOM Bruce2
Received:
2022-07-11
Published:
2023-06-05
Online:
2022-08-23
Contact:
GUO Jiangfeng
E-mail:jguo7@cup.edu.cn
CLC Number:
GUO Jiangfeng,MACMILLAN Bryce,BALCOM Bruce. Insights into the Phase Structure and Dynamics of Polyurethane Rubber Using T1-T2* Relaxation Correlation[J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 111-121.
Table 2
T1 and T2* values, and signal intensity integrals of 40A, 80A, and 75D PURs based on T1-T2* spectra
PUR样品 | 信号I | 信号II | 信号III | 总信号强度 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1/ms | T2*/μs | 信号强度 | T1/ms | T2*/μs | 信号强度 | T1/ms | T2*/μs | 信号强度 | ||||
40A | 360 | 18 | 2.60×105 | 360 | 39 | 7.40×105 | 323 | 121 | 3.08×105 | 1.31×106 | ||
80A | 323 | 20 | 4.03×105 | 335 | 38 | 6.81×105 | 301 | 106 | 2.20×105 | 1.30×106 | ||
75D | 217 | 20 | 1.07×106 | 234 | 46 | 2.88×105 | 225 | 167 | 1.61×105 | 1.52×106 |
Table 3
T1 and T2* values, and signal intensity integrals of 75D PUR based on T1-T2* spectra at different temperatures
温度/℃ | 信号I | 信号II | 信号III | 总信号强度 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1/ms | T2*/μs | 信号强度 | T1/ms | T2*/μs | 信号强度 | T1/ms | T2*/μs | 信号强度 | ||||
0 | 217 | 20 | 1.07×106 | 234 | 46 | 2.88×105 | 225 | 167 | 1.61×105 | 1.52×106 | ||
20 | 217 | 20 | 8.81×105 | 217 | 51 | 3.06×105 | 217 | 202 | 2.69×105 | 1.46×106 | ||
40 | 242 | 21 | 7.34×105 | 242 | 50 | 2.83×105 | 242 | 219 | 3.71×105 | 1.39×106 | ||
60 | 280 | 21 | 6.04×105 | 290 | 52 | 2.62×105 | 280 | 245 | 4.38×105 | 1.30×106 | ||
80 | 355 | 21 | 4.98×105 | 355 | 55 | 2.46×105 | 355 | 258 | 4.69×105 | 1.21×106 |
[1] |
AKINDOYO J O, BEG M D, GHAZALI S, et al. Polyurethane types, synthesis and applications-a review[J]. RSC Adv, 2016, 6 (115): 114453-114482.
doi: 10.1039/C6RA14525F |
[2] |
BOUTAR Y, NAÏMI S, MEZLINI S, et al. Fatigue resistance of an Aluminium one-component polyurethane adhesive joint for the automotive industry: Effect of surface roughness and adhesive thickness[J]. Inter J Adhes Adhes, 2018, 83: 143-152.
doi: 10.1016/j.ijadhadh.2018.02.012 |
[3] |
MILLS D J, JAMALI S S, PAPROCKA K. Investigation into the effect of nano-silica on the protective properties of polyurethane coatings[J]. Surf Coat Tech, 2012, 209: 137-142.
doi: 10.1016/j.surfcoat.2012.08.056 |
[4] |
HUNG K C, TSENG C S, HSU S H. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications[J]. Adv Healthc Mater, 2014, 3(10): 1578-1587.
doi: 10.1002/adhm.v3.10 |
[5] | ZHANG Y L, WU T H, ZHANG Y, et al. Influence of polyurethane rubber hardness on internal high pressure forming for thin-walled T-tube[J]. Forg Stamp Techn, 2022, 47(1): 99-105. |
张云峦, 吴天华, 张羽, 等. 聚氨酯橡胶硬度对薄壁三通管内高压成形的影响[J]. 锻压技术, 2022, 47(1): 99-105. | |
[6] | HUANG W, SU Y P, HAN L T, et al. Experimental study on vertical performance of polyurethane rubber shock absorption bearing[J]. J Build Struct, 2020, 41(S2): 70-76. |
黄玮, 苏幼坡, 韩流涛, 等. 聚氨酯橡胶减震支座竖向性能试验研究[J]. 建筑结构学报, 2020, 41(S2): 70-76. | |
[7] | ASSINK R A. The study of domain structure in polyurethanes by nuclear magnetic resonance[J]. J Polym Sci Polym Phys Edit, 1977, 15: 59-69. |
[8] | HEPBURN C. Polyurethane elastomers[M]. Springer Science & Business Media, 2012. |
[9] |
GAUR M S, RATHORE B S, SINGH P K, et al. Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites[J]. J Therm Anal Calorim, 2010, 101(1): 315-321.
doi: 10.1007/s10973-010-0675-2 |
[10] |
ZHAO J, HOOGENBOOM R, VAN ASSCHE G, et al. Demixing and remixing kinetics of poly (2-isopropyl-2-oxazoline) (PIPOZ) aqueous solutions studied by modulated temperature differential scanning calorimetry[J]. Macromolecules, 2010, 43(16): 6853-6860.
doi: 10.1021/ma1012368 |
[11] |
CAVALLARO G, DONATO D I, LAZZARA G, et al. Determining the selective impregnation of waterlogged archaeological woods with poly (ethylene) glycols mixtures by differential scanning calorimetry[J]. J Therm Anal Calorim, 2013, 111(2): 1449-1455.
doi: 10.1007/s10973-012-2528-7 |
[12] |
THOMAS E M, BRADY M A, NAKAYAMA H, et al. X-Ray scattering reveals ion-induced microstructural changes during electrochemical gating of poly (3-Hexylthiophene)[J]. Adv Funct Mater, 2018, 28(44): 1803687.
doi: 10.1002/adfm.v28.44 |
[13] |
ZHANG X Q, SCHNEIDER K, LIU G M, et al. Deformation-mediated superstructures and cavitation of poly (L-lactide): In-situ small-angle X-ray scattering study[J]. Polymer, 2012, 53(2): 648-656.
doi: 10.1016/j.polymer.2011.12.002 |
[14] |
TODA A, TAGUCHI K, NOZAKI K, et al. Crystallization and melting of poly (butylene terephthalate) and poly (ethylene terephthalate) investigated by fast-scan chip calorimetry and small angle X-ray scattering[J]. Polymer, 2020, 192: 122303.
doi: 10.1016/j.polymer.2020.122303 |
[15] |
CHEUNG T T P, GERSTEIN B C. 1H nuclear magnetic resonance studies of domain structures in polymers[J]. J Appl Phys, 1981, 52(9): 5517-5528.
doi: 10.1063/1.329534 |
[16] |
WEGLARZ W P, PEEMOELLER H, RUDIN A. Characterization of annealed isotactic polypropylene in the solid state by 2D time-domain 1H NMR[J]. J Polym Sci Part B Polym Phys, 2000, 38(19): 2487-2506.
doi: 10.1002/(ISSN)1099-0488 |
[17] | WANG L, XIAO L Z, GUO L, et al. Nuclear magnetic resonance characterization of nano self-assembly γ-Al2O3 pore structure[J]. Acta Phys Chim Sin, 2017, 33(8): 1589-1598. |
王琳, 肖立志, 郭龙, 等. 纳米自组装γ-Al2O3孔隙结构的核磁共振表征[J]. 物理化学学报, 2017, 33(8): 1589-1598. | |
[18] | LI Z R, MENG Q A, GUAN D H, et al. NMR studies on self diffusion coefficients of lithium ions in PAN-based gel polymer electrolytes[J]. Acta Phys Sin, 1999, 48(6): 202-205. |
李子荣, 孟庆安, 管荻华, 等. PAN为基凝胶聚合物电解质自扩散系数的NMR研究[J]. 物理学报, 1999, 48(6): 202-205. | |
[19] | WU M Y, YONG Z G. Analysis of linear urethane predolymer by 1H-NMR spectroscopy[J]. Chinese J Magn Reson, 1986, 3(3): 223-227. |
吴美玉, 雍忠根. 用1H-NMR法分析线性聚氨酯预聚体[J]. 波谱学杂志, 1986, 3(3): 223-227. | |
[20] | LI C F, ZHU X R. An NMR and FT-IR study on polyether modified silicon surfactant[J]. Chinese J Magn Reson, 2014, 31(2): 222-231. |
李春发, 朱雪荣. 聚醚改性有机硅表面活性剂的核磁共振及红外光谱表征[J]. 波谱学杂志, 2014, 31(2): 222-231. | |
[21] |
SCHÄLER K, ACHILLES A, BÄRENWALD R, et al. Dynamics in crystallites of poly (ε-caprolactone) as investigated by solid-state NMR[J]. Macromolecules, 2013, 46(19): 7818-7825.
doi: 10.1021/ma401532v |
[22] |
PAPON A, SAALWÄCHTER K, SCHÄLER K, et al. Low-field NMR investigations of nanocomposites: polymer dynamics and network effects[J]. Macromolecules, 2011, 44(4): 913-922.
doi: 10.1021/ma102486x |
[23] |
ZHU H J, HUININK H P, ADAN O C G, et al. NMR study of the microstructures and water-polymer interactions in cross-linked polyurethane coatings[J]. Macromolecules, 2013, 46(15): 6124-6131.
doi: 10.1021/ma401256n |
[24] |
DISSANAYAKE D S, SHEINA E, BIEWER M C, et al. Determination of absolute molecular weight of regioregular poly (3-hexylthiophene) by 1H-NMR analysis[J]. J Polym Sci Part A Polym Chem, 2017, 55(1): 79-82.
doi: 10.1002/pola.v55.1 |
[25] | WEN L, LI C F. Structure and configuration analyses of a nucleating agent for isotactic polypropylene crystallization[J]. Chinese J Magn Reson, 2020, 37(3): 291-299. |
温亮, 李春发. 等规聚丙烯成核剂的结构和构型分析[J]. 波谱学杂志, 2020, 37(3): 291-299. | |
[26] | YAN K, BAI Z W, HUANG S H. NMR signal separation of ionic liquids by poly (sodium-p-styrenesulfonate)-assisted chromatographic NMR spectroscopy[J]. Magn Reson Lett, 2021, 1(2): 153-159. |
[27] | NAVEED K, WANG L, YU H J, et al. Study on the synthesis of spin labeled poly (styrene-co-maleic acid)s and their segmental motion[J]. Magn Reson Lett, 2022, 2(2), 80-90. |
[28] |
FERRINI V, FORTE C, GEPPI M, et al. Correlation between 1H FID and T1ρ components in heterogeneous polymer systems: an application to SBS[J]. Solid State Nucl Magn Reson, 2005, 27(4): 215-222.
doi: 10.1016/j.ssnmr.2004.11.005 |
[29] |
GHOSE S, ISAYEV A I, VON MEERWALL E. Effect of ultrasound on thermoset polyurethane: NMR relaxation and diffusion measurements[J]. Polymer, 2004, 45(11): 3709-3720.
doi: 10.1016/j.polymer.2004.03.053 |
[30] |
MOWERY D M, ASSINK R A, CELINA M. Sensitivity of proton NMR relaxation times in a HTPB based polyurethane elastomer to thermo-oxidative aging[J]. Polymer, 2005, 46(24): 10919-10924.
doi: 10.1016/j.polymer.2005.08.093 |
[31] |
BESGHINI D, MAURI M, SIMONUTTI R. Time domain NMR in polymer science: from the laboratory to the industry[J]. Appl Sci, 2019, 9(9): 1801.
doi: 10.3390/app9091801 |
[32] |
ZHANG R C, YU S, CHEN S L, et al. Reversible cross-linking, microdomain structure, and heterogeneous dynamics in thermally reversible cross-linked polyurethane as revealed by solid-state NMR[J]. J Phys Chem B, 2014, 118(4): 1126-1137.
doi: 10.1021/jp409893f |
[33] |
CHAVHAN G B, BABYN P S, THOMAS B, et al. Principles, techniques, and applications of T2*-based MR imaging and its special applications[J]. Radiographics, 2009, 29(5): 1433-1449.
doi: 10.1148/rg.295095034 |
[34] | XIE R H, XIAO L Z, LIU J J, et al. A method for multiple echo trains jointing inversion of NMR relaxation measurements[J]. Chinese J Geophys, 2009, 52(11): 2913-2919. |
谢然红, 肖立志, 刘家军, 等. 核磁共振多回波串联合反演方法[J]. 地球物理学报, 2009, 52(11): 2913-2919. | |
[35] | ZHOU X L, NIE S D, WANG Y J, et al. A review on the inversion methods in 2D NMR[J]. Chinese J Magn Reson, 2013, 30(2): 293-305. |
周小龙, 聂生东, 王远军, 等. 核磁共振二维谱反演技术综述[J]. 波谱学杂志, 2013, 30(2): 293-305. | |
[36] |
ZAMIRI M S, MACMILLAN B, MARICA F, et al. Petrophysical and geochemical evaluation of shales using magnetic resonance T1-T2* relaxation correlation[J]. Fuel, 2021, 284: 119014.
doi: 10.1016/j.fuel.2020.119014 |
[37] | ENJILELA R, GUO J F, MACMILLAN B, et al. T1-T2* relaxation correlation measurements[J]. J Magn Reson, 2021; 326, 106961. |
[38] |
GUO J F, MACMILLAN B, ZAMIRI S, et al. Magnetic resonance T1-T2* and T1ρ-T2* relaxation correlation measurements in solid-like materials with non-exponential decays[J]. J Magn Reson, 2021, 328: 107005.
doi: 10.1016/j.jmr.2021.107005 |
[39] |
SCHÄLER K, ROOS M, MICKE P, et al. Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast[J]. Solid State Nucl Magn Reson, 2015, 72: 50-63.
doi: 10.1016/j.ssnmr.2015.09.001 pmid: 26404771 |
[40] |
SÁNCHEZ-ADSUAR M S, PASTOR-BLAS M M, MARTÍN-MARTÍNEZ J M. Properties of polyurethane elastomers with different hard/soft segment ratio[J]. J Adhesion, 1998, 67(1-4): 327-345.
doi: 10.1080/00218469808011115 |
[41] |
ANDREAS M, HERTLEIN C, SAALWÄCHTER K. A robust proton NMR method to investigate hard/soft ratios, crystallinity, and component mobility in polymers[J]. Macromol Chem Phys, 2006, 207(13): 1150-1158.
doi: 10.1002/(ISSN)1521-3935 |
[42] |
SCALAPINO D J. Curie law for Anderson's model of a dilute alloy[J]. Phys Rev Lett, 1966, 16(21): 937-939.
doi: 10.1103/PhysRevLett.16.937 |
[1] | WANG Feng,LIU Tingwei,XU Yajie,YU Peng,WANG Ya,PENG Bowen,YANG Xiaodong. A Miniaturised NMR RF Probe Design with External Field-locking Channel [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 332-340. |
[2] | DONG Hongchun,ZHANG Zhilan,WANG Ning,TANG Dandan,QIU Zihui,SHU Jie. The Improved Solid-state NMR Quantitative Method on the Bases of Multiple-cross Polarization Technique [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 136-147. |
[3] | WANG Yuanfang,WANG Xiaohua,SHU Chang,ZHANG Xu,LIU Maili,ZENG Danyun. The Aggregation of ATAD2 Bromodomain in Solution [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 169-178. |
[4] | ZHAO Chang,GONG Zhou. Investigation of Dynamic Structure of Protein Encountering Complex with Paramagnetic NMR [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 148-157. |
[5] | CI Jie,YANG Xue,XIN Jiaxiang,WEI Daxiu,YAO Yefeng. Preparation and Lifetime Studies of the Singlet State of Five Spins in Hexene Molecules Used to Guide the Preservation of the Parahydrogen-induced Nuclear Polarization State [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 30-38. |
[6] | SHI Guanghui,XIAO Lizhi,LIAO Guangzhi,LUO Sihui,HOU Xueli,LU Yapu. A New Method and Circuit of Ringing Suppression for Low-field NMR Instruments [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 68-78. |
[7] | ZHAN Jianhua,HU Qin,ZHU Qinjun,JIANG Bin,ZHANG Xu,LIU Maili. Track the Conformational Change of Unlabeled Yeast Cytochrome c in Cell Homogenate Using NMR [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 22-29. |
[8] | Rui QIN,Chao WANG,Qiang WANG,Min HU,Jin-lin LI,Jun XU,Feng DENG. Formation and Reactivity of Surface Methoxy Species in Methanol Conversion over SSZ-13 Zeolite [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 439-447. |
[9] | Xiao-yang ZHANG, Shou-quan YAO, Jun-cheng XU, Yu JIANG. Magnetic Field Locking System Based on Fluxgate and Time Domain Digital Frequency Discrimination [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 448-458. |
[10] | Chang-feng WANG,Yang LAN,Hai-yang YAN,Mei PENG,Si-yu CHEN. Laser Detection of Nuclear Magnetic Resonance FID Signal for Polarized 3He System [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 459-466. |
[11] | Yun-shan PEI, Cai ZHANG, Xiao-li LIU, Kai CHENG, Ze-ting ZHANG, Cong-gang LI. Inhibition of α-Synuclein Aggregation by the Interaction Between Protein Disulfide Isomerase and α-Synuclein [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 381-392. |
[12] | Han HU,Wei-yu WANG,Jun XU,Feng DENG. 1, 3-Butadienen Hydrogenation on Supported Pd-Sn Bimetallic Catalysts Investigated by Parahydrogen-induced Polarization [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 133-143. |
[13] | Shu ZENG, Shu-tao XU, Ying-xu WEI, Zhong-min LIU. Investigation of the Ethanol Dehydration to Ethene Reaction on H-SSZ-13 Molecular Sieve by in situ Solid-state NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 123-132. |
[14] | Lei CHEN,Hong-bing LIU,Hui-li LIU. Comparison of Different Approaches for Estimation of the Detection Limit of Quantitative NMR [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 230-242. |
[15] | Qian XU,Lang CHEN,Xiang-ying HU,Cong-gang LI,Yi-xiang LIU,Ling JIANG. The Effect of T69E-mimicked Phosphorylation on the Interaction Between Bcl-2 and Nur77 [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 87-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||